text-generation-webui/extensions/openai/typing.py

220 lines
7.3 KiB
Python
Raw Normal View History

import json
import time
from typing import Dict, List
from pydantic import BaseModel, Field
class GenerationOptions(BaseModel):
preset: str | None = Field(default=None, description="The name of a file under text-generation-webui/presets (without the .yaml extension). The sampling parameters that get overwritten by this option are the keys in the default_preset() function in modules/presets.py.")
min_p: float = 0
dynamic_temperature: bool = False
dynatemp_low: float = 1
dynatemp_high: float = 1
dynatemp_exponent: float = 1
smoothing_factor: float = 0
smoothing_curve: float = 1
top_k: int = 0
repetition_penalty: float = 1
repetition_penalty_range: int = 1024
typical_p: float = 1
tfs: float = 1
top_a: float = 0
epsilon_cutoff: float = 0
eta_cutoff: float = 0
guidance_scale: float = 1
negative_prompt: str = ''
penalty_alpha: float = 0
mirostat_mode: int = 0
mirostat_tau: float = 5
mirostat_eta: float = 0.1
2023-11-06 16:11:49 +01:00
temperature_last: bool = False
do_sample: bool = True
seed: int = -1
encoder_repetition_penalty: float = 1
no_repeat_ngram_size: int = 0
dry_multiplier: float = 0
dry_base: float = 1.75
dry_allowed_length: int = 2
dry_sequence_breakers: str = '"\\n", ":", "\\"", "*"'
xtc_threshold: float = 0.1
xtc_probability: float = 0
truncation_length: int = 0
max_tokens_second: int = 0
prompt_lookup_num_tokens: int = 0
static_cache: bool = False
custom_token_bans: str = ""
sampler_priority: List[str] | str | None = Field(default=None, description="List of samplers where the first items will appear first in the stack. Example: [\"top_k\", \"temperature\", \"top_p\"].")
auto_max_new_tokens: bool = False
ban_eos_token: bool = False
add_bos_token: bool = True
skip_special_tokens: bool = True
grammar_string: str = ""
class CompletionRequestParams(BaseModel):
model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.")
prompt: str | List[str]
2023-11-07 17:56:09 +01:00
best_of: int | None = Field(default=1, description="Unused parameter.")
echo: bool | None = False
frequency_penalty: float | None = 0
logit_bias: dict | None = None
logprobs: int | None = None
max_tokens: int | None = 16
2023-11-07 17:56:09 +01:00
n: int | None = Field(default=1, description="Unused parameter.")
presence_penalty: float | None = 0
stop: str | List[str] | None = None
stream: bool | None = False
suffix: str | None = None
temperature: float | None = 1
top_p: float | None = 1
2023-11-07 17:43:45 +01:00
user: str | None = Field(default=None, description="Unused parameter.")
class CompletionRequest(GenerationOptions, CompletionRequestParams):
pass
class CompletionResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "text_completion"
usage: dict
class ChatCompletionRequestParams(BaseModel):
messages: List[dict]
model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.")
frequency_penalty: float | None = 0
2023-11-07 17:56:09 +01:00
function_call: str | dict | None = Field(default=None, description="Unused parameter.")
functions: List[dict] | None = Field(default=None, description="Unused parameter.")
logit_bias: dict | None = None
max_tokens: int | None = None
2023-11-07 17:56:09 +01:00
n: int | None = Field(default=1, description="Unused parameter.")
presence_penalty: float | None = 0
stop: str | List[str] | None = None
stream: bool | None = False
temperature: float | None = 1
top_p: float | None = 1
2023-11-07 17:56:09 +01:00
user: str | None = Field(default=None, description="Unused parameter.")
mode: str = Field(default='instruct', description="Valid options: instruct, chat, chat-instruct.")
instruction_template: str | None = Field(default=None, description="An instruction template defined under text-generation-webui/instruction-templates. If not set, the correct template will be automatically obtained from the model metadata.")
instruction_template_str: str | None = Field(default=None, description="A Jinja2 instruction template. If set, will take precedence over everything else.")
character: str | None = Field(default=None, description="A character defined under text-generation-webui/characters. If not set, the default \"Assistant\" character will be used.")
bot_name: str | None = Field(default=None, description="Overwrites the value set by character field.", alias="name2")
context: str | None = Field(default=None, description="Overwrites the value set by character field.")
greeting: str | None = Field(default=None, description="Overwrites the value set by character field.")
user_name: str | None = Field(default=None, description="Your name (the user). By default, it's \"You\".", alias="name1")
user_bio: str | None = Field(default=None, description="The user description/personality.")
chat_template_str: str | None = Field(default=None, description="Jinja2 template for chat.")
chat_instruct_command: str | None = None
continue_: bool = Field(default=False, description="Makes the last bot message in the history be continued instead of starting a new message.")
class ChatCompletionRequest(GenerationOptions, ChatCompletionRequestParams):
pass
class ChatCompletionResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "chat.completion"
usage: dict
class ChatPromptResponse(BaseModel):
prompt: str
class EmbeddingsRequest(BaseModel):
input: str | List[str] | List[int] | List[List[int]]
model: str | None = Field(default=None, description="Unused parameter. To change the model, set the OPENEDAI_EMBEDDING_MODEL and OPENEDAI_EMBEDDING_DEVICE environment variables before starting the server.")
encoding_format: str = Field(default="float", description="Can be float or base64.")
user: str | None = Field(default=None, description="Unused parameter.")
class EmbeddingsResponse(BaseModel):
index: int
embedding: List[float]
object: str = "embedding"
class EncodeRequest(BaseModel):
text: str
class EncodeResponse(BaseModel):
tokens: List[int]
length: int
class DecodeRequest(BaseModel):
tokens: List[int]
class DecodeResponse(BaseModel):
text: str
class TokenCountResponse(BaseModel):
length: int
class LogitsRequestParams(BaseModel):
prompt: str
use_samplers: bool = False
top_logits: int | None = 50
frequency_penalty: float | None = 0
max_tokens: int | None = 16
presence_penalty: float | None = 0
temperature: float | None = 1
top_p: float | None = 1
class LogitsRequest(GenerationOptions, LogitsRequestParams):
pass
class LogitsResponse(BaseModel):
logits: Dict[str, float]
2023-11-08 03:59:02 +01:00
class ModelInfoResponse(BaseModel):
model_name: str
lora_names: List[str]
class ModelListResponse(BaseModel):
model_names: List[str]
class LoadModelRequest(BaseModel):
model_name: str
args: dict | None = None
settings: dict | None = None
class LoraListResponse(BaseModel):
lora_names: List[str]
class LoadLorasRequest(BaseModel):
lora_names: List[str]
def to_json(obj):
return json.dumps(obj.__dict__, indent=4)
def to_dict(obj):
return obj.__dict__