2024-07-02 04:27:18 +02:00
|
|
|
import base64
|
|
|
|
import gc
|
|
|
|
import io
|
2024-06-29 06:32:54 +02:00
|
|
|
from pathlib import Path
|
|
|
|
|
2023-03-09 12:46:50 +01:00
|
|
|
import gradio as gr
|
2024-06-29 06:32:54 +02:00
|
|
|
import numpy as np
|
2024-07-02 04:27:18 +02:00
|
|
|
import torch
|
|
|
|
import whisper
|
|
|
|
from pydub import AudioSegment
|
2023-05-09 22:49:39 -03:00
|
|
|
|
2023-04-07 15:57:29 -03:00
|
|
|
from modules import shared
|
2023-03-09 20:33:00 +01:00
|
|
|
|
2023-03-09 12:46:50 +01:00
|
|
|
input_hijack = {
|
|
|
|
'state': False,
|
|
|
|
'value': ["", ""]
|
|
|
|
}
|
|
|
|
|
2024-07-02 04:27:18 +02:00
|
|
|
# parameters which can be customized in settings.yaml of webui
|
2023-07-07 17:54:53 -06:00
|
|
|
params = {
|
|
|
|
'whipser_language': 'english',
|
|
|
|
'whipser_model': 'small.en',
|
|
|
|
'auto_submit': True
|
|
|
|
}
|
|
|
|
|
2024-07-02 04:27:18 +02:00
|
|
|
startup_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
WHISPERMODEL = whisper.load_model(params['whipser_model'], device=startup_device)
|
|
|
|
|
2023-03-09 12:46:50 +01:00
|
|
|
|
2023-07-25 18:49:56 -03:00
|
|
|
def chat_input_modifier(text, visible_text, state):
|
|
|
|
global input_hijack
|
|
|
|
if input_hijack['state']:
|
|
|
|
input_hijack['state'] = False
|
|
|
|
return input_hijack['value']
|
|
|
|
else:
|
|
|
|
return text, visible_text
|
|
|
|
|
|
|
|
|
2024-07-02 04:27:18 +02:00
|
|
|
def do_stt(audio, whipser_language):
|
|
|
|
# use pydub to convert sample_rate and sample_width for whisper input
|
|
|
|
dubaudio = AudioSegment.from_file(io.BytesIO(audio))
|
|
|
|
dubaudio = dubaudio.set_channels(1)
|
|
|
|
dubaudio = dubaudio.set_frame_rate(16000)
|
|
|
|
dubaudio = dubaudio.set_sample_width(2)
|
2023-03-09 12:46:50 +01:00
|
|
|
|
2024-07-02 04:27:18 +02:00
|
|
|
# same method to get the array as openai whisper repo used from wav file
|
|
|
|
audio_np = np.frombuffer(dubaudio.raw_data, np.int16).flatten().astype(np.float32) / 32768.0
|
2023-03-09 12:46:50 +01:00
|
|
|
|
2024-07-02 04:27:18 +02:00
|
|
|
if len(whipser_language) == 0:
|
|
|
|
result = WHISPERMODEL.transcribe(audio=audio_np)
|
|
|
|
else:
|
|
|
|
result = WHISPERMODEL.transcribe(audio=audio_np, language=whipser_language)
|
|
|
|
return result["text"]
|
2023-03-12 21:03:07 +01:00
|
|
|
|
2023-03-09 12:46:50 +01:00
|
|
|
|
2024-07-02 04:27:18 +02:00
|
|
|
def auto_transcribe(audio, auto_submit, whipser_language):
|
|
|
|
if audio is None or audio == "":
|
|
|
|
print("Whisper received no audio data")
|
2023-03-13 21:41:19 +01:00
|
|
|
return "", ""
|
2024-07-02 04:27:18 +02:00
|
|
|
audio_bytes = base64.b64decode(audio.split(',')[1])
|
|
|
|
|
|
|
|
transcription = do_stt(audio_bytes, whipser_language)
|
2023-04-07 15:57:29 -03:00
|
|
|
if auto_submit:
|
|
|
|
input_hijack.update({"state": True, "value": [transcription, transcription]})
|
2024-07-02 04:27:18 +02:00
|
|
|
return transcription
|
|
|
|
|
|
|
|
|
|
|
|
def reload_whispermodel(whisper_model_name: str, whisper_language: str, device: str):
|
|
|
|
if len(whisper_model_name) > 0:
|
|
|
|
global WHISPERMODEL
|
|
|
|
WHISPERMODEL = None
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
if device != "none":
|
|
|
|
if device == "cuda":
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
2023-04-07 15:57:29 -03:00
|
|
|
|
2024-07-02 04:27:18 +02:00
|
|
|
WHISPERMODEL = whisper.load_model(whisper_model_name, device=device)
|
|
|
|
params.update({"whipser_model": whisper_model_name})
|
|
|
|
if ".en" in whisper_model_name:
|
|
|
|
whisper_language = "english"
|
|
|
|
audio_update = gr.Audio.update(interactive=True)
|
|
|
|
else:
|
|
|
|
audio_update = gr.Audio.update(interactive=False)
|
|
|
|
return [whisper_model_name, whisper_language, str(device), audio_update]
|
2023-03-13 21:41:19 +01:00
|
|
|
|
|
|
|
|
2023-03-09 12:46:50 +01:00
|
|
|
def ui():
|
2023-07-07 17:54:53 -06:00
|
|
|
with gr.Accordion("Whisper STT", open=True):
|
|
|
|
with gr.Row():
|
2024-07-02 04:27:18 +02:00
|
|
|
audio = gr.Textbox(elem_id="audio-base64", visible=False)
|
|
|
|
record_button = gr.Button("Rec.", elem_id="record-button", elem_classes="custom-button")
|
2023-07-07 17:54:53 -06:00
|
|
|
with gr.Row():
|
|
|
|
with gr.Accordion("Settings", open=False):
|
|
|
|
auto_submit = gr.Checkbox(label='Submit the transcribed audio automatically', value=params['auto_submit'])
|
2024-07-02 04:27:18 +02:00
|
|
|
device_dropd = gr.Dropdown(label='Device', value=str(startup_device), choices=["cuda", "cpu", "none"])
|
|
|
|
whisper_model_dropd = gr.Dropdown(label='Whisper Model', value=params['whipser_model'], choices=["tiny.en", "base.en", "small.en", "medium.en", "tiny", "base", "small", "medium", "large"])
|
|
|
|
whisper_language = gr.Dropdown(label='Whisper Language', value=params['whipser_language'], choices=["english", "chinese", "german", "spanish", "russian", "korean", "french", "japanese", "portuguese", "turkish", "polish", "catalan", "dutch", "arabic", "swedish", "italian", "indonesian", "hindi", "finnish", "vietnamese", "hebrew", "ukrainian", "greek", "malay", "czech", "romanian", "danish", "hungarian", "tamil", "norwegian", "thai", "urdu", "croatian", "bulgarian", "lithuanian", "latin", "maori", "malayalam", "welsh", "slovak", "telugu", "persian", "latvian", "bengali", "serbian", "azerbaijani", "slovenian", "kannada", "estonian", "macedonian", "breton", "basque", "icelandic", "armenian", "nepali", "mongolian", "bosnian", "kazakh", "albanian", "swahili", "galician", "marathi", "punjabi", "sinhala", "khmer", "shona", "yoruba", "somali", "afrikaans", "occitan", "georgian", "belarusian", "tajik", "sindhi", "gujarati", "amharic", "yiddish", "lao", "uzbek", "faroese", "haitian creole", "pashto", "turkmen", "nynorsk", "maltese", "sanskrit", "luxembourgish", "myanmar", "tibetan", "tagalog", "malagasy", "assamese", "tatar", "hawaiian", "lingala", "hausa", "bashkir", "javanese", "sundanese"])
|
2023-04-13 10:40:27 -03:00
|
|
|
|
2024-07-02 04:27:18 +02:00
|
|
|
audio.change(
|
|
|
|
auto_transcribe, [audio, auto_submit, whisper_language], [shared.gradio['textbox']]).then(
|
|
|
|
None, auto_submit, None, _js="(check) => {if (check) { document.getElementById('Generate').click() }}")
|
2023-07-25 18:49:56 -03:00
|
|
|
|
2024-07-02 04:27:18 +02:00
|
|
|
device_dropd.input(reload_whispermodel, [whisper_model_dropd, whisper_language, device_dropd], [whisper_model_dropd, whisper_language, device_dropd, audio])
|
|
|
|
whisper_model_dropd.change(reload_whispermodel, [whisper_model_dropd, whisper_language, device_dropd], [whisper_model_dropd, whisper_language, device_dropd, audio])
|
|
|
|
whisper_language.change(lambda x: params.update({"whipser_language": x}), whisper_language, None)
|
2023-07-07 17:54:53 -06:00
|
|
|
auto_submit.change(lambda x: params.update({"auto_submit": x}), auto_submit, None)
|
2024-06-29 06:32:54 +02:00
|
|
|
|
|
|
|
|
|
|
|
def custom_js():
|
|
|
|
"""
|
|
|
|
Returns custom javascript as a string. It is applied whenever the web UI is
|
|
|
|
loaded.
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
with open(Path(__file__).parent.resolve() / "script.js", "r") as f:
|
|
|
|
return f.read()
|