2023-03-12 15:12:34 +01:00
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import accelerate
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import modules.shared as shared
|
|
|
|
|
|
|
|
sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa")))
|
|
|
|
from llama import load_quant
|
|
|
|
|
|
|
|
|
|
|
|
# 4-bit LLaMA
|
|
|
|
def load_quantized_LLaMA(model_name):
|
|
|
|
if shared.args.load_in_4bit:
|
|
|
|
bits = 4
|
|
|
|
else:
|
2023-03-12 15:19:07 +01:00
|
|
|
bits = shared.args.gptq_bits
|
2023-03-12 15:12:34 +01:00
|
|
|
|
|
|
|
path_to_model = Path(f'models/{model_name}')
|
|
|
|
pt_model = ''
|
|
|
|
if path_to_model.name.lower().startswith('llama-7b'):
|
|
|
|
pt_model = f'llama-7b-{bits}bit.pt'
|
|
|
|
elif path_to_model.name.lower().startswith('llama-13b'):
|
|
|
|
pt_model = f'llama-13b-{bits}bit.pt'
|
|
|
|
elif path_to_model.name.lower().startswith('llama-30b'):
|
|
|
|
pt_model = f'llama-30b-{bits}bit.pt'
|
|
|
|
elif path_to_model.name.lower().startswith('llama-65b'):
|
|
|
|
pt_model = f'llama-65b-{bits}bit.pt'
|
|
|
|
else:
|
|
|
|
pt_model = f'{model_name}-{bits}bit.pt'
|
|
|
|
|
|
|
|
# Try to find the .pt both in models/ and in the subfolder
|
|
|
|
pt_path = None
|
|
|
|
for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
|
|
|
|
if path.exists():
|
|
|
|
pt_path = path
|
|
|
|
|
|
|
|
if not pt_path:
|
|
|
|
print(f"Could not find {pt_model}, exiting...")
|
|
|
|
exit()
|
|
|
|
|
2023-03-12 16:41:04 +01:00
|
|
|
model = load_quant(path_to_model, os.path.abspath(pt_path), bits)
|
2023-03-12 15:12:34 +01:00
|
|
|
|
|
|
|
# Multi-GPU setup
|
|
|
|
if shared.args.gpu_memory:
|
|
|
|
max_memory = {}
|
|
|
|
for i in range(len(shared.args.gpu_memory)):
|
|
|
|
max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
|
|
|
|
max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
|
|
|
|
|
|
|
|
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
|
|
|
|
model = accelerate.dispatch_model(model, device_map=device_map)
|
|
|
|
|
|
|
|
# Single GPU
|
|
|
|
else:
|
|
|
|
model = model.to(torch.device('cuda:0'))
|
|
|
|
|
|
|
|
return model
|