2023-01-06 05:41:52 +01:00
|
|
|
import os
|
2022-12-21 17:27:31 +01:00
|
|
|
import re
|
2023-01-06 05:33:21 +01:00
|
|
|
import time
|
|
|
|
import glob
|
2023-01-06 23:56:44 +01:00
|
|
|
from sys import exit
|
2022-12-21 17:27:31 +01:00
|
|
|
import torch
|
2023-01-06 23:56:44 +01:00
|
|
|
import argparse
|
2022-12-21 17:27:31 +01:00
|
|
|
import gradio as gr
|
|
|
|
import transformers
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
from transformers import GPTJForCausalLM, AutoModelForCausalLM, AutoModelForSeq2SeqLM, OPTForCausalLM, T5Tokenizer, T5ForConditionalGeneration, GPTJModel, AutoModel
|
|
|
|
|
2023-01-06 23:56:44 +01:00
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--model', type=str, help='Name of the model to load by default')
|
|
|
|
args = parser.parse_args()
|
2023-01-06 06:06:59 +01:00
|
|
|
loaded_preset = None
|
2023-01-06 23:56:44 +01:00
|
|
|
available_models = sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*[!\.][!t][!x][!t]")+ glob.glob("torch-dumps/*[!\.][!t][!x][!t]"))))
|
2023-01-06 05:33:21 +01:00
|
|
|
|
2022-12-21 17:27:31 +01:00
|
|
|
def load_model(model_name):
|
2023-01-06 05:41:52 +01:00
|
|
|
print(f"Loading {model_name}...")
|
2022-12-21 17:27:31 +01:00
|
|
|
t0 = time.time()
|
2023-01-06 05:41:52 +01:00
|
|
|
|
2023-01-06 06:54:33 +01:00
|
|
|
# Loading the model
|
2023-01-06 05:41:52 +01:00
|
|
|
if os.path.exists(f"torch-dumps/{model_name}.pt"):
|
|
|
|
print("Loading in .pt format...")
|
|
|
|
model = torch.load(f"torch-dumps/{model_name}.pt").cuda()
|
2023-01-06 06:54:33 +01:00
|
|
|
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')):
|
|
|
|
if any(size in model_name for size in ('13b', '20b', '30b')):
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True)
|
|
|
|
else:
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
2022-12-21 17:27:31 +01:00
|
|
|
elif model_name in ['gpt-j-6B']:
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
2023-01-06 06:06:59 +01:00
|
|
|
elif model_name in ['flan-t5', 't5-large']:
|
2022-12-21 17:27:31 +01:00
|
|
|
model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda()
|
2023-01-06 06:54:33 +01:00
|
|
|
else:
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
2022-12-21 17:27:31 +01:00
|
|
|
|
2023-01-06 06:54:33 +01:00
|
|
|
# Loading the tokenizer
|
|
|
|
if model_name.startswith('gpt4chan'):
|
2022-12-21 17:27:31 +01:00
|
|
|
tokenizer = AutoTokenizer.from_pretrained("models/gpt-j-6B/")
|
|
|
|
elif model_name in ['flan-t5']:
|
|
|
|
tokenizer = T5Tokenizer.from_pretrained(f"models/{model_name}/")
|
|
|
|
else:
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(f"models/{model_name}/")
|
|
|
|
|
2023-01-06 06:06:59 +01:00
|
|
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
2022-12-21 17:27:31 +01:00
|
|
|
return model, tokenizer
|
|
|
|
|
2023-01-06 06:26:33 +01:00
|
|
|
# Removes empty replies from gpt4chan outputs
|
2022-12-21 17:27:31 +01:00
|
|
|
def fix_gpt4chan(s):
|
|
|
|
for i in range(10):
|
|
|
|
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
|
|
|
|
s = re.sub("--- [0-9]*\n *\n---", "---", s)
|
|
|
|
s = re.sub("--- [0-9]*\n\n\n---", "---", s)
|
|
|
|
return s
|
|
|
|
|
2023-01-06 06:26:33 +01:00
|
|
|
def generate_reply(question, temperature, max_length, inference_settings, selected_model):
|
2023-01-06 06:06:59 +01:00
|
|
|
global model, tokenizer, model_name, loaded_preset, preset
|
2022-12-21 17:27:31 +01:00
|
|
|
|
|
|
|
if selected_model != model_name:
|
|
|
|
model_name = selected_model
|
|
|
|
model = None
|
|
|
|
tokenier = None
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
model, tokenizer = load_model(model_name)
|
2023-01-06 06:06:59 +01:00
|
|
|
if inference_settings != loaded_preset:
|
2023-01-06 05:33:21 +01:00
|
|
|
with open(f'presets/{inference_settings}.txt', 'r') as infile:
|
|
|
|
preset = infile.read()
|
2023-01-06 06:06:59 +01:00
|
|
|
loaded_preset = inference_settings
|
2022-12-21 17:27:31 +01:00
|
|
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
input_text = question
|
|
|
|
input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda()
|
|
|
|
|
2023-01-06 05:33:21 +01:00
|
|
|
output = eval(f"model.generate(input_ids, {preset}).cuda()")
|
2022-12-21 17:27:31 +01:00
|
|
|
|
|
|
|
reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
if model_name.startswith('gpt4chan'):
|
|
|
|
reply = fix_gpt4chan(reply)
|
|
|
|
|
|
|
|
return reply
|
|
|
|
|
2023-01-06 23:56:44 +01:00
|
|
|
# Choosing the default model
|
|
|
|
if args.model is not None:
|
|
|
|
model_name = args.model
|
|
|
|
else:
|
|
|
|
if len(available_models == 0):
|
|
|
|
print("No models are available! Please download at least one.")
|
|
|
|
exit(0)
|
|
|
|
elif len(available_models) == 1:
|
|
|
|
i = 0
|
|
|
|
else:
|
|
|
|
print("The following models are available:\n")
|
|
|
|
for i,model in enumerate(available_models):
|
|
|
|
print(f"{i+1}. {model}")
|
|
|
|
print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
|
|
|
|
i = int(input())-1
|
|
|
|
model_name = available_models[i]
|
2022-12-21 17:27:31 +01:00
|
|
|
model, tokenizer = load_model(model_name)
|
2023-01-06 23:56:44 +01:00
|
|
|
|
2022-12-21 17:27:31 +01:00
|
|
|
if model_name.startswith('gpt4chan'):
|
|
|
|
default_text = "-----\n--- 865467536\nInput text\n--- 865467537\n"
|
|
|
|
else:
|
|
|
|
default_text = "Common sense questions and answers\n\nQuestion: \nFactual answer:"
|
|
|
|
|
|
|
|
interface = gr.Interface(
|
2023-01-06 06:26:33 +01:00
|
|
|
generate_reply,
|
2022-12-21 17:27:31 +01:00
|
|
|
inputs=[
|
|
|
|
gr.Textbox(value=default_text, lines=15),
|
|
|
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
|
|
|
gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
2023-01-06 05:33:21 +01:00
|
|
|
gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
|
2023-01-06 23:56:44 +01:00
|
|
|
gr.Dropdown(choices=available_models, value=model_name),
|
2022-12-21 17:27:31 +01:00
|
|
|
],
|
|
|
|
outputs=[
|
|
|
|
gr.Textbox(placeholder="", lines=15),
|
|
|
|
],
|
|
|
|
title="Text generation lab",
|
2023-01-06 06:26:33 +01:00
|
|
|
description=f"Generate text using Large Language Models.",
|
2022-12-21 17:27:31 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
interface.launch(share=False, server_name="0.0.0.0")
|