365 lines
23 KiB
Python
Raw Normal View History

import gc
import io
import json
import re
import sys
import time
import zipfile
from pathlib import Path
2022-12-21 13:27:31 -03:00
import gradio as gr
import torch
import modules.chat as chat
import modules.extensions as extensions_module
import modules.shared as shared
2023-02-23 13:03:52 -03:00
import modules.ui as ui
from modules.html_generator import generate_chat_html
2023-02-23 14:41:42 -03:00
from modules.models import load_model, load_soft_prompt
2023-02-23 13:03:52 -03:00
from modules.text_generation import generate_reply
2022-12-21 13:27:31 -03:00
if (shared.args.chat or shared.args.cai_chat) and not shared.args.no_stream:
print('Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n')
2023-01-29 14:27:22 -03:00
2023-02-23 14:31:28 -03:00
# Loading custom settings
if shared.args.settings is not None and Path(shared.args.settings).exists():
new_settings = json.loads(open(Path(shared.args.settings), 'r').read())
2023-01-16 16:35:45 -03:00
for item in new_settings:
2023-02-23 13:28:30 -03:00
shared.settings[item] = new_settings[item]
2023-02-23 14:31:28 -03:00
def get_available_models():
return sorted([item.name for item in list(Path('models/').glob('*')) if not item.name.endswith(('.txt', '-np'))], key=str.lower)
def get_available_presets():
return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
def get_available_characters():
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
2023-02-23 14:31:28 -03:00
def get_available_extensions():
return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
def get_available_softprompts():
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
2023-02-23 14:31:28 -03:00
2023-02-07 22:08:21 -03:00
def load_model_wrapper(selected_model):
if selected_model != shared.model_name:
shared.model_name = selected_model
2023-02-23 13:28:30 -03:00
shared.model = shared.tokenizer = None
if not shared.args.cpu:
2023-02-07 22:08:21 -03:00
gc.collect()
torch.cuda.empty_cache()
shared.model, shared.tokenizer = load_model(shared.model_name)
2023-02-07 22:08:21 -03:00
2023-02-12 09:36:27 -03:00
return selected_model
2023-02-07 22:08:21 -03:00
def load_preset_values(preset_menu, return_dict=False):
2023-02-08 00:19:20 -03:00
generate_params = {
2023-02-07 22:08:21 -03:00
'do_sample': True,
'temperature': 1,
'top_p': 1,
'typical_p': 1,
'repetition_penalty': 1,
'top_k': 50,
2023-02-07 23:11:04 -03:00
'num_beams': 1,
'penalty_alpha': 0,
2023-02-07 23:11:04 -03:00
'min_length': 0,
'length_penalty': 1,
'no_repeat_ngram_size': 0,
'early_stopping': False,
2023-02-07 22:08:21 -03:00
}
with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile:
preset = infile.read()
2023-02-11 14:54:29 -03:00
for i in preset.splitlines():
i = i.rstrip(',').strip().split('=')
2023-02-07 22:08:21 -03:00
if len(i) == 2 and i[0].strip() != 'tokens':
2023-02-08 00:19:20 -03:00
generate_params[i[0].strip()] = eval(i[1].strip())
2023-02-07 22:08:21 -03:00
2023-02-08 00:19:20 -03:00
generate_params['temperature'] = min(1.99, generate_params['temperature'])
2023-02-07 22:08:21 -03:00
if return_dict:
2023-02-08 00:19:20 -03:00
return generate_params
2023-02-07 22:08:21 -03:00
else:
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
2023-02-07 22:08:21 -03:00
2023-02-23 13:28:30 -03:00
def upload_soft_prompt(file):
with zipfile.ZipFile(io.BytesIO(file)) as zf:
zf.extract('meta.json')
j = json.loads(open('meta.json', 'r').read())
name = j['name']
Path('meta.json').unlink()
with open(Path(f'softprompts/{name}.zip'), 'wb') as f:
f.write(file)
return name
2023-02-07 22:08:21 -03:00
def create_settings_menus():
2023-02-23 13:28:30 -03:00
generate_params = load_preset_values(shared.settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', return_dict=True)
2023-01-22 00:49:59 -03:00
2023-02-07 22:08:21 -03:00
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['model_menu'] = gr.Dropdown(choices=available_models, value=shared.model_name, label='Model')
ui.create_refresh_button(shared.gradio['model_menu'], lambda : None, lambda : {'choices': get_available_models()}, 'refresh-button')
2023-02-07 22:08:21 -03:00
with gr.Column():
with gr.Row():
shared.gradio['preset_menu'] = gr.Dropdown(choices=available_presets, value=shared.settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
ui.create_refresh_button(shared.gradio['preset_menu'], lambda : None, lambda : {'choices': get_available_presets()}, 'refresh-button')
2023-01-22 00:49:59 -03:00
with gr.Accordion('Custom generation parameters', open=False, elem_id='accordion'):
2023-02-07 22:08:21 -03:00
with gr.Row():
with gr.Column():
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature')
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 2.99, value=generate_params['repetition_penalty'],step=0.01,label='repetition_penalty')
2023-02-25 15:21:40 -03:00
shared.gradio['top_k'] = gr.Slider(0,200,value=generate_params['top_k'],step=1,label='top_k')
shared.gradio['top_p'] = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label='top_p')
2023-02-25 15:21:40 -03:00
with gr.Column():
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
shared.gradio['typical_p'] = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label='typical_p')
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'] if shared.args.no_stream else 0, label='min_length', interactive=shared.args.no_stream)
2023-02-17 16:18:01 -03:00
gr.Markdown('Contrastive search:')
shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha')
2023-02-17 16:18:01 -03:00
gr.Markdown('Beam search (uses a lot of VRAM):')
2023-02-17 16:33:27 -03:00
with gr.Row():
with gr.Column():
shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], label='num_beams')
with gr.Column():
shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')
2023-02-07 22:08:21 -03:00
with gr.Accordion('Soft prompt', open=False, elem_id='accordion'):
with gr.Row():
shared.gradio['softprompts_menu'] = gr.Dropdown(choices=available_softprompts, value='None', label='Soft prompt')
ui.create_refresh_button(shared.gradio['softprompts_menu'], lambda : None, lambda : {'choices': get_available_softprompts()}, 'refresh-button')
gr.Markdown('Upload a soft prompt (.zip format):')
with gr.Row():
shared.gradio['upload_softprompt'] = gr.File(type='binary', file_types=['.zip'])
shared.gradio['model_menu'].change(load_model_wrapper, [shared.gradio['model_menu']], [shared.gradio['model_menu']], show_progress=True)
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio['do_sample'], shared.gradio['temperature'], shared.gradio['top_p'], shared.gradio['typical_p'], shared.gradio['repetition_penalty'], shared.gradio['top_k'], shared.gradio['min_length'], shared.gradio['no_repeat_ngram_size'], shared.gradio['num_beams'], shared.gradio['penalty_alpha'], shared.gradio['length_penalty'], shared.gradio['early_stopping']])
shared.gradio['softprompts_menu'].change(load_soft_prompt, [shared.gradio['softprompts_menu']], [shared.gradio['softprompts_menu']], show_progress=True)
shared.gradio['upload_softprompt'].upload(upload_soft_prompt, [shared.gradio['upload_softprompt']], [shared.gradio['softprompts_menu']])
2023-02-07 22:08:21 -03:00
2023-01-22 00:49:59 -03:00
available_models = get_available_models()
available_presets = get_available_presets()
available_characters = get_available_characters()
available_softprompts = get_available_softprompts()
2023-02-23 13:03:52 -03:00
extensions_module.available_extensions = get_available_extensions()
if shared.args.extensions is not None:
2023-02-23 14:55:21 -03:00
extensions_module.load_extensions()
2023-01-22 00:49:59 -03:00
2023-01-06 19:56:44 -03:00
# Choosing the default model
if shared.args.model is not None:
shared.model_name = shared.args.model
2023-01-06 19:56:44 -03:00
else:
2023-01-06 22:05:37 -03:00
if len(available_models) == 0:
print('No models are available! Please download at least one.')
2023-01-30 14:17:12 -03:00
sys.exit(0)
2023-01-06 19:56:44 -03:00
elif len(available_models) == 1:
i = 0
else:
print('The following models are available:\n')
2023-02-23 14:31:28 -03:00
for i, model in enumerate(available_models):
print(f'{i+1}. {model}')
print(f'\nWhich one do you want to load? 1-{len(available_models)}\n')
2023-01-06 19:56:44 -03:00
i = int(input())-1
2023-01-09 12:56:54 -03:00
print()
shared.model_name = available_models[i]
shared.model, shared.tokenizer = load_model(shared.model_name)
2023-01-06 19:56:44 -03:00
# UI settings
2023-02-23 14:31:28 -03:00
gen_events = []
suffix = '_pygmalion' if 'pygmalion' in shared.model_name.lower() else ''
description = '\n\n# Text generation lab\nGenerate text using Large Language Models.\n'
if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
2023-02-23 13:28:30 -03:00
default_text = shared.settings['prompt_gpt4chan']
elif re.match('(rosey|chip|joi)_.*_instruct.*', shared.model_name.lower()) is not None:
default_text = 'User: \n'
else:
2023-02-23 13:28:30 -03:00
default_text = shared.settings['prompt']
if shared.args.chat or shared.args.cai_chat:
with gr.Blocks(css=ui.css+ui.chat_css, analytics_enabled=False) as shared.gradio['interface']:
if shared.args.cai_chat:
shared.gradio['display'] = gr.HTML(value=generate_chat_html(shared.history['visible'], shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}'], shared.character))
2023-01-15 18:16:46 -03:00
else:
2023-02-26 00:51:15 -03:00
shared.gradio['display'] = gr.Chatbot(value=shared.history['visible']).style(color_map=("#326efd", "#212528"))
shared.gradio['textbox'] = gr.Textbox(label='Input')
2023-01-09 17:23:43 -03:00
with gr.Row():
shared.gradio['Stop'] = gr.Button('Stop')
shared.gradio['Generate'] = gr.Button('Generate')
2023-02-04 22:53:42 -03:00
with gr.Row():
shared.gradio['Impersonate'] = gr.Button('Impersonate')
2023-02-25 15:35:43 -03:00
shared.gradio['Regenerate'] = gr.Button('Regenerate')
with gr.Row():
2023-02-25 16:33:46 -03:00
shared.gradio['Copy last reply'] = gr.Button('Copy last reply')
shared.gradio['Replace last reply'] = gr.Button('Replace last reply')
2023-02-25 15:35:43 -03:00
shared.gradio['Remove last'] = gr.Button('Remove last')
2023-02-27 11:41:21 -03:00
2023-02-25 15:35:43 -03:00
shared.gradio['Clear history'] = gr.Button('Clear history')
2023-02-27 11:41:21 -03:00
shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False)
shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant="stop", visible=False)
with gr.Tab('Chat settings'):
shared.gradio['name1'] = gr.Textbox(value=shared.settings[f'name1{suffix}'], lines=1, label='Your name')
shared.gradio['name2'] = gr.Textbox(value=shared.settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
shared.gradio['context'] = gr.Textbox(value=shared.settings[f'context{suffix}'], lines=2, label='Context')
2023-02-15 20:55:32 -03:00
with gr.Row():
shared.gradio['character_menu'] = gr.Dropdown(choices=available_characters, value='None', label='Character', elem_id='character-menu')
ui.create_refresh_button(shared.gradio['character_menu'], lambda : None, lambda : {'choices': get_available_characters()}, 'refresh-button')
2023-01-15 18:16:46 -03:00
2023-02-15 20:55:32 -03:00
with gr.Row():
shared.gradio['check'] = gr.Checkbox(value=shared.settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
2023-02-15 20:55:32 -03:00
with gr.Row():
with gr.Tab('Chat history'):
with gr.Row():
with gr.Column():
gr.Markdown('Upload')
shared.gradio['upload_chat_history'] = gr.File(type='binary', file_types=['.json', '.txt'])
2023-02-15 20:55:32 -03:00
with gr.Column():
gr.Markdown('Download')
shared.gradio['download'] = gr.File()
shared.gradio['download_button'] = gr.Button(value='Click me')
2023-02-15 20:55:32 -03:00
with gr.Tab('Upload character'):
with gr.Row():
with gr.Column():
gr.Markdown('1. Select the JSON file')
shared.gradio['upload_json'] = gr.File(type='binary', file_types=['.json'])
2023-02-15 20:55:32 -03:00
with gr.Column():
gr.Markdown('2. Select your character\'s profile picture (optional)')
shared.gradio['upload_img_bot'] = gr.File(type='binary', file_types=['image'])
shared.gradio['Upload character'] = gr.Button(value='Submit')
2023-02-15 20:55:32 -03:00
with gr.Tab('Upload your profile picture'):
shared.gradio['upload_img_me'] = gr.File(type='binary', file_types=['image'])
2023-02-15 20:55:32 -03:00
with gr.Tab('Upload TavernAI Character Card'):
shared.gradio['upload_img_tavern'] = gr.File(type='binary', file_types=['image'])
2023-02-15 20:55:32 -03:00
with gr.Tab('Generation settings'):
2023-02-15 20:55:32 -03:00
with gr.Row():
with gr.Column():
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
2023-02-15 20:55:32 -03:00
with gr.Column():
shared.gradio['chat_prompt_size_slider'] = gr.Slider(minimum=shared.settings['chat_prompt_size_min'], maximum=shared.settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=shared.settings['chat_prompt_size'])
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)')
2023-02-24 19:00:11 -03:00
create_settings_menus()
2023-02-25 01:42:19 -03:00
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
if shared.args.extensions is not None:
with gr.Tab('Extensions'):
2023-02-23 14:55:21 -03:00
extensions_module.create_extensions_block()
function_call = 'chat.cai_chatbot_wrapper' if shared.args.cai_chat else 'chat.chatbot_wrapper'
gen_events.append(shared.gradio['Generate'].click(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Regenerate'].click(chat.regenerate_wrapper, shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Impersonate'].click(chat.impersonate_wrapper, shared.input_params, shared.gradio['textbox'], show_progress=shared.args.no_stream))
shared.gradio['Stop'].click(chat.stop_everything_event, [], [], cancels=gen_events)
2023-02-25 16:33:46 -03:00
shared.gradio['Copy last reply'].click(chat.send_last_reply_to_input, [], shared.gradio['textbox'], show_progress=shared.args.no_stream)
shared.gradio['Replace last reply'].click(chat.replace_last_reply, [shared.gradio['textbox'], shared.gradio['name1'], shared.gradio['name2']], shared.gradio['display'], show_progress=shared.args.no_stream)
2023-02-27 11:41:21 -03:00
# Clear history with confirmation
clear_arr = [shared.gradio[k] for k in ['Clear history-confirm', 'Clear history', 'Clear history-cancel']]
shared.gradio['Clear history'].click(lambda :[gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, clear_arr)
shared.gradio['Clear history-confirm'].click(chat.clear_chat_log, [shared.gradio['name1'], shared.gradio['name2']], shared.gradio['display'])
shared.gradio['Clear history-confirm'].click(lambda :[gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr)
shared.gradio['Clear history-cancel'].click(lambda :[gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr)
shared.gradio['Remove last'].click(chat.remove_last_message, [shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['display'], shared.gradio['textbox']], show_progress=False)
shared.gradio['download_button'].click(chat.save_history, inputs=[], outputs=[shared.gradio['download']])
shared.gradio['Upload character'].click(chat.upload_character, [shared.gradio['upload_json'], shared.gradio['upload_img_bot']], [shared.gradio['character_menu']])
2023-02-15 11:38:44 -03:00
2023-02-15 12:46:11 -03:00
# Clearing stuff and saving the history
for i in ['Generate', 'Regenerate', 'Replace last reply']:
shared.gradio[i].click(lambda x: '', shared.gradio['textbox'], shared.gradio['textbox'], show_progress=False)
shared.gradio[i].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
shared.gradio['Clear history'].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
shared.gradio['textbox'].submit(lambda x: '', shared.gradio['textbox'], shared.gradio['textbox'], show_progress=False)
shared.gradio['textbox'].submit(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
shared.gradio['character_menu'].change(chat.load_character, [shared.gradio['character_menu'], shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['name2'], shared.gradio['context'], shared.gradio['display']])
shared.gradio['upload_chat_history'].upload(chat.load_history, [shared.gradio['upload_chat_history'], shared.gradio['name1'], shared.gradio['name2']], [])
shared.gradio['upload_img_tavern'].upload(chat.upload_tavern_character, [shared.gradio['upload_img_tavern'], shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['character_menu']])
shared.gradio['upload_img_me'].upload(chat.upload_your_profile_picture, [shared.gradio['upload_img_me']], [])
reload_func = chat.redraw_html if shared.args.cai_chat else lambda : shared.history['visible']
reload_inputs = [shared.gradio['name1'], shared.gradio['name2']] if shared.args.cai_chat else []
shared.gradio['upload_chat_history'].upload(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['upload_img_me'].upload(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['interface'].load(lambda : chat.load_default_history(shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}']), None, None)
shared.gradio['interface'].load(reload_func, reload_inputs, [shared.gradio['display']], show_progress=True)
elif shared.args.notebook:
with gr.Blocks(css=ui.css, analytics_enabled=False) as shared.gradio['interface']:
2023-01-18 22:44:47 -03:00
gr.Markdown(description)
with gr.Tab('Raw'):
shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=23)
2023-01-18 22:44:47 -03:00
with gr.Tab('Markdown'):
shared.gradio['markdown'] = gr.Markdown()
2023-01-18 22:44:47 -03:00
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
2023-01-11 01:33:57 -03:00
shared.gradio['Generate'] = gr.Button('Generate')
shared.gradio['Stop'] = gr.Button('Stop')
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
2023-01-18 22:44:47 -03:00
create_settings_menus()
if shared.args.extensions is not None:
2023-02-23 14:55:21 -03:00
extensions_module.create_extensions_block()
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
shared.gradio['Stop'].click(None, None, None, cancels=gen_events)
2023-01-18 22:44:47 -03:00
else:
with gr.Blocks(css=ui.css, analytics_enabled=False) as shared.gradio['interface']:
gr.Markdown(description)
2023-01-06 22:05:37 -03:00
with gr.Row():
with gr.Column():
shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=15, label='Input')
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
shared.gradio['Generate'] = gr.Button('Generate')
2023-01-18 22:44:47 -03:00
with gr.Row():
with gr.Column():
shared.gradio['Continue'] = gr.Button('Continue')
2023-01-18 22:44:47 -03:00
with gr.Column():
shared.gradio['Stop'] = gr.Button('Stop')
2023-02-07 22:08:21 -03:00
create_settings_menus()
if shared.args.extensions is not None:
2023-02-23 14:55:21 -03:00
extensions_module.create_extensions_block()
2023-01-06 22:05:37 -03:00
with gr.Column():
with gr.Tab('Raw'):
shared.gradio['output_textbox'] = gr.Textbox(lines=15, label='Output')
2023-01-06 22:05:37 -03:00
with gr.Tab('Markdown'):
shared.gradio['markdown'] = gr.Markdown()
2023-01-06 23:14:08 -03:00
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
2023-01-06 22:05:37 -03:00
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Continue'].click(generate_reply, [shared.gradio['output_textbox']] + shared.input_params[1:], output_params, show_progress=shared.args.no_stream))
shared.gradio['Stop'].click(None, None, None, cancels=gen_events)
2022-12-21 13:27:31 -03:00
shared.gradio['interface'].queue()
if shared.args.listen:
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_name='0.0.0.0', server_port=shared.args.listen_port)
2023-01-20 23:45:16 -03:00
else:
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_port=shared.args.listen_port)
2023-02-07 22:08:21 -03:00
# I think that I will need this later
while True:
time.sleep(0.5)