From 05e703b4a4174b712ef16cec2fe3729cf40d1bd8 Mon Sep 17 00:00:00 2001 From: oobabooga <112222186+oobabooga@users.noreply.github.com> Date: Fri, 3 Mar 2023 21:24:32 -0300 Subject: [PATCH] Print the performance information more reliably --- modules/text_generation.py | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/modules/text_generation.py b/modules/text_generation.py index bd018c05..a7d41b84 100644 --- a/modules/text_generation.py +++ b/modules/text_generation.py @@ -86,12 +86,18 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi if not shared.args.cpu: torch.cuda.empty_cache() + t0 = time.time() + + # These models are not part of Hugging Face, so we handle them + # separately and terminate the function call earlier if shared.is_RWKV or shared.is_LLaMA: if shared.args.no_stream: reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p) + t1 = time.time() + print(f"Output generated in {(t1-t0):.2f} seconds.") yield formatted_outputs(reply, shared.model_name) else: - for i in range(max_new_tokens//8): + for i in tqdm(range(max_new_tokens//8+1)): reply = shared.model.generate(question, token_count=8, temperature=temperature, top_p=top_p) yield formatted_outputs(reply, shared.model_name) question = reply @@ -160,7 +166,6 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi # Generate the entire reply at once if shared.args.no_stream: - t0 = time.time() with torch.no_grad(): output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0] if shared.soft_prompt: @@ -169,10 +174,10 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi reply = decode(output) if not (shared.args.chat or shared.args.cai_chat): reply = original_question + apply_extensions(reply[len(question):], "output") - yield formatted_outputs(reply, shared.model_name) t1 = time.time() print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)") + yield formatted_outputs(reply, shared.model_name) # Generate the reply 8 tokens at a time else: