mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-26 12:22:08 +01:00
Use 'with' statement to better handle streaming memory
This commit is contained in:
parent
37f0166b2d
commit
0bd5430988
@ -50,11 +50,11 @@ class RWKVModel:
|
||||
return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
|
||||
|
||||
def generate_with_streaming(self, **kwargs):
|
||||
iterable = Iteratorize(self.generate, kwargs, callback=None)
|
||||
reply = kwargs['context']
|
||||
for token in iterable:
|
||||
reply += token
|
||||
yield reply
|
||||
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
||||
reply = kwargs['context']
|
||||
for token in generator:
|
||||
reply += token
|
||||
yield reply
|
||||
|
||||
class RWKVTokenizer:
|
||||
def __init__(self):
|
||||
|
@ -1,3 +1,4 @@
|
||||
import gc
|
||||
from queue import Queue
|
||||
from threading import Thread
|
||||
|
||||
@ -6,7 +7,6 @@ import transformers
|
||||
|
||||
import modules.shared as shared
|
||||
|
||||
|
||||
# Copied from https://github.com/PygmalionAI/gradio-ui/
|
||||
class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):
|
||||
|
||||
@ -52,17 +52,24 @@ class Iteratorize:
|
||||
self.q = Queue()
|
||||
self.sentinel = object()
|
||||
self.kwargs = kwargs
|
||||
self.stop_now = False
|
||||
|
||||
def _callback(val):
|
||||
if self.stop_now:
|
||||
raise ValueError
|
||||
self.q.put(val)
|
||||
|
||||
def gentask():
|
||||
ret = self.mfunc(callback=_callback, **self.kwargs)
|
||||
try:
|
||||
ret = self.mfunc(callback=_callback, **self.kwargs)
|
||||
except ValueError:
|
||||
pass
|
||||
self.q.put(self.sentinel)
|
||||
if self.c_callback:
|
||||
self.c_callback(ret)
|
||||
|
||||
Thread(target=gentask).start()
|
||||
self.thread = Thread(target=gentask)
|
||||
self.thread.start()
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
@ -75,4 +82,16 @@ class Iteratorize:
|
||||
return obj
|
||||
|
||||
def __del__(self):
|
||||
pass
|
||||
clear_torch_cache()
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.stop_now = True
|
||||
clear_torch_cache()
|
||||
|
||||
def clear_torch_cache():
|
||||
gc.collect()
|
||||
if not shared.args.cpu:
|
||||
torch.cuda.empty_cache()
|
||||
|
@ -186,17 +186,18 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
||||
|
||||
yield formatted_outputs(original_question, shared.model_name)
|
||||
for output in eval(f"generate_with_streaming({', '.join(generate_params)})"):
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
reply = decode(output)
|
||||
with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator:
|
||||
for output in generator:
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
reply = decode(output)
|
||||
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
if output[-1] == n:
|
||||
break
|
||||
if output[-1] == n:
|
||||
break
|
||||
|
||||
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user