mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-21 23:57:58 +01:00
Add dynamic_temperature_low parameter (#5198)
This commit is contained in:
parent
b8a0b3f925
commit
0d07b3a6a1
@ -54,7 +54,8 @@ For more information about the parameters, the [transformers documentation](http
|
|||||||
* **mirostat_mode**: Activates the Mirostat sampling technique. It aims to control perplexity during sampling. See the [paper](https://arxiv.org/abs/2007.14966).
|
* **mirostat_mode**: Activates the Mirostat sampling technique. It aims to control perplexity during sampling. See the [paper](https://arxiv.org/abs/2007.14966).
|
||||||
* **mirostat_tau**: No idea, see the paper for details. According to the Preset Arena, 8 is a good value.
|
* **mirostat_tau**: No idea, see the paper for details. According to the Preset Arena, 8 is a good value.
|
||||||
* **mirostat_eta**: No idea, see the paper for details. According to the Preset Arena, 0.1 is a good value.
|
* **mirostat_eta**: No idea, see the paper for details. According to the Preset Arena, 0.1 is a good value.
|
||||||
* **dynatemp**: Dynamic Temperature is activated when this parameter is greater than 0. The temperature range is determined by adding and subtracting dynatemp from the current temperature.
|
* **dynamic_temperature_low**: The lower bound for temperature in Dynamic Temperature. Only used when "dynamic_temperature" is checked.
|
||||||
|
* **dynamic_temperature**: Activates Dynamic Temperature. This modifies temperature to range between "dynamic_temperature_low" (minimum) and "temperature" (maximum), with an entropy-based scaling.
|
||||||
* **temperature_last**: Makes temperature the last sampler instead of the first. With this, you can remove low probability tokens with a sampler like min_p and then use a high temperature to make the model creative without losing coherency.
|
* **temperature_last**: Makes temperature the last sampler instead of the first. With this, you can remove low probability tokens with a sampler like min_p and then use a high temperature to make the model creative without losing coherency.
|
||||||
* **do_sample**: When unchecked, sampling is entirely disabled, and greedy decoding is used instead (the most likely token is always picked).
|
* **do_sample**: When unchecked, sampling is entirely disabled, and greedy decoding is used instead (the most likely token is always picked).
|
||||||
* **Seed**: Set the Pytorch seed to this number. Note that some loaders do not use Pytorch (notably llama.cpp), and others are not deterministic (notably ExLlama v1 and v2). For these loaders, the seed has no effect.
|
* **Seed**: Set the Pytorch seed to this number. Note that some loaders do not use Pytorch (notably llama.cpp), and others are not deterministic (notably ExLlama v1 and v2). For these loaders, the seed has no effect.
|
||||||
|
@ -1,17 +0,0 @@
|
|||||||
# dynatemp_with_range
|
|
||||||
|
|
||||||
This extension makes it possible to set the minimum and maximum temperatures for dynamic temperature explicitly.
|
|
||||||
|
|
||||||
For instance, you can directly set
|
|
||||||
|
|
||||||
```
|
|
||||||
min_T = 0.1
|
|
||||||
max_T = 3
|
|
||||||
```
|
|
||||||
|
|
||||||
instead of having to convert that to
|
|
||||||
|
|
||||||
```
|
|
||||||
T = 1.55
|
|
||||||
dynatemp = 1.45
|
|
||||||
```
|
|
@ -1,51 +0,0 @@
|
|||||||
import gradio as gr
|
|
||||||
|
|
||||||
params = {
|
|
||||||
"activate": True,
|
|
||||||
"minimum_temperature": 0.1,
|
|
||||||
"maximum_temperature": 2,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def convert_to_dynatemp():
|
|
||||||
temperature = 0.5 * (params["minimum_temperature"] + params["maximum_temperature"])
|
|
||||||
dynatemp = params["maximum_temperature"] - temperature
|
|
||||||
return temperature, dynatemp
|
|
||||||
|
|
||||||
|
|
||||||
def state_modifier(state):
|
|
||||||
"""
|
|
||||||
Modifies the state variable, which is a dictionary containing the input
|
|
||||||
values in the UI like sliders and checkboxes.
|
|
||||||
"""
|
|
||||||
|
|
||||||
if params["activate"]:
|
|
||||||
temperature, dynatemp = convert_to_dynatemp()
|
|
||||||
|
|
||||||
state["temperature"] = temperature
|
|
||||||
state["dynatemp"] = dynatemp
|
|
||||||
|
|
||||||
return state
|
|
||||||
|
|
||||||
|
|
||||||
def generate_info():
|
|
||||||
temperature, dynatemp = convert_to_dynatemp()
|
|
||||||
return f"The combination above is equivalent to: T={temperature:.2f}, dynatemp={dynatemp:.2f}"
|
|
||||||
|
|
||||||
|
|
||||||
def ui():
|
|
||||||
activate = gr.Checkbox(value=params['activate'], label='Activate Dynamic Temperature Range', info='When checked, the default temperature/dynatemp parameters are ignored and the parameters below are used instead.')
|
|
||||||
with gr.Row():
|
|
||||||
minimum_temperature = gr.Slider(0, 5, step=0.01, label="Minimum temperature", value=params["minimum_temperature"], interactive=True)
|
|
||||||
maximum_temperature = gr.Slider(0, 5, step=0.01, label="Maximum temperature", value=params["maximum_temperature"], interactive=True)
|
|
||||||
|
|
||||||
info = gr.HTML(generate_info())
|
|
||||||
|
|
||||||
activate.change(lambda x: params.update({"activate": x}), activate, None)
|
|
||||||
minimum_temperature.change(
|
|
||||||
lambda x: params.update({"minimum_temperature": x}), minimum_temperature, None).then(
|
|
||||||
generate_info, None, info, show_progress=False)
|
|
||||||
|
|
||||||
maximum_temperature.change(
|
|
||||||
lambda x: params.update({"maximum_temperature": x}), maximum_temperature, None).then(
|
|
||||||
generate_info, None, info, show_progress=False)
|
|
@ -8,7 +8,8 @@ from pydantic import BaseModel, Field
|
|||||||
class GenerationOptions(BaseModel):
|
class GenerationOptions(BaseModel):
|
||||||
preset: str | None = Field(default=None, description="The name of a file under text-generation-webui/presets (without the .yaml extension). The sampling parameters that get overwritten by this option are the keys in the default_preset() function in modules/presets.py.")
|
preset: str | None = Field(default=None, description="The name of a file under text-generation-webui/presets (without the .yaml extension). The sampling parameters that get overwritten by this option are the keys in the default_preset() function in modules/presets.py.")
|
||||||
min_p: float = 0
|
min_p: float = 0
|
||||||
dynatemp: float = 0
|
dynamic_temperature: bool = False
|
||||||
|
dynamic_temperature_low: float = 0.1
|
||||||
top_k: int = 0
|
top_k: int = 0
|
||||||
repetition_penalty: float = 1
|
repetition_penalty: float = 1
|
||||||
repetition_penalty_range: int = 1024
|
repetition_penalty_range: int = 1024
|
||||||
|
@ -155,7 +155,8 @@ def transformers_samplers():
|
|||||||
return {
|
return {
|
||||||
'temperature',
|
'temperature',
|
||||||
'temperature_last',
|
'temperature_last',
|
||||||
'dynatemp',
|
'dynamic_temperature',
|
||||||
|
'dynamic_temperature_low',
|
||||||
'top_p',
|
'top_p',
|
||||||
'min_p',
|
'min_p',
|
||||||
'top_k',
|
'top_k',
|
||||||
@ -221,7 +222,8 @@ loaders_samplers = {
|
|||||||
'ExLlamav2_HF': {
|
'ExLlamav2_HF': {
|
||||||
'temperature',
|
'temperature',
|
||||||
'temperature_last',
|
'temperature_last',
|
||||||
'dynatemp',
|
'dynamic_temperature',
|
||||||
|
'dynamic_temperature_low',
|
||||||
'top_p',
|
'top_p',
|
||||||
'min_p',
|
'min_p',
|
||||||
'top_k',
|
'top_k',
|
||||||
@ -274,7 +276,8 @@ loaders_samplers = {
|
|||||||
'llamacpp_HF': {
|
'llamacpp_HF': {
|
||||||
'temperature',
|
'temperature',
|
||||||
'temperature_last',
|
'temperature_last',
|
||||||
'dynatemp',
|
'dynamic_temperature',
|
||||||
|
'dynamic_temperature_low',
|
||||||
'top_p',
|
'top_p',
|
||||||
'min_p',
|
'min_p',
|
||||||
'top_k',
|
'top_k',
|
||||||
|
@ -12,7 +12,8 @@ def default_preset():
|
|||||||
return {
|
return {
|
||||||
'temperature': 1,
|
'temperature': 1,
|
||||||
'temperature_last': False,
|
'temperature_last': False,
|
||||||
'dynatemp': 0,
|
'dynamic_temperature': False,
|
||||||
|
'dynamic_temperature_low': 0.1,
|
||||||
'top_p': 1,
|
'top_p': 1,
|
||||||
'min_p': 0,
|
'min_p': 0,
|
||||||
'top_k': 0,
|
'top_k': 0,
|
||||||
@ -53,7 +54,6 @@ def load_preset(name):
|
|||||||
for k in preset:
|
for k in preset:
|
||||||
generate_params[k] = preset[k]
|
generate_params[k] = preset[k]
|
||||||
|
|
||||||
generate_params['temperature'] = min(1.99, generate_params['temperature'])
|
|
||||||
return generate_params
|
return generate_params
|
||||||
|
|
||||||
|
|
||||||
|
@ -16,7 +16,7 @@ global_scores = None
|
|||||||
|
|
||||||
|
|
||||||
class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
|
class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
|
||||||
def __init__(self, temperature: float, dynatemp: float):
|
def __init__(self, temperature: float, dynamic_temperature: bool, dynamic_temperature_low: float):
|
||||||
if not isinstance(temperature, float) or not (temperature > 0):
|
if not isinstance(temperature, float) or not (temperature > 0):
|
||||||
except_msg = (
|
except_msg = (
|
||||||
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
|
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
|
||||||
@ -28,19 +28,20 @@ class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
|
|||||||
raise ValueError(except_msg)
|
raise ValueError(except_msg)
|
||||||
|
|
||||||
self.temperature = temperature
|
self.temperature = temperature
|
||||||
self.dynatemp = dynatemp
|
self.dynamic_temperature = dynamic_temperature
|
||||||
|
self.dynamic_temperature_low = dynamic_temperature_low
|
||||||
|
|
||||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||||
|
|
||||||
# Regular temperature
|
# Regular temperature
|
||||||
if self.dynatemp == 0:
|
if not self.dynamic_temperature:
|
||||||
scores = scores / self.temperature
|
scores = scores / self.temperature
|
||||||
return scores
|
return scores
|
||||||
|
|
||||||
# Dynamic temperature
|
# Dynamic temperature
|
||||||
else:
|
else:
|
||||||
min_temp = max(0.0, self.temperature - self.dynatemp)
|
min_temp = self.dynamic_temperature_low
|
||||||
max_temp = self.temperature + self.dynatemp
|
max_temp = self.temperature
|
||||||
exponent_val = 1.0
|
exponent_val = 1.0
|
||||||
|
|
||||||
# Convert logits to probabilities
|
# Convert logits to probabilities
|
||||||
@ -283,7 +284,7 @@ def get_logits_warper_patch(self, generation_config):
|
|||||||
generation_config.temperature = float(generation_config.temperature)
|
generation_config.temperature = float(generation_config.temperature)
|
||||||
|
|
||||||
temperature = generation_config.temperature
|
temperature = generation_config.temperature
|
||||||
if generation_config.dynatemp > 0:
|
if generation_config.dynamic_temperature:
|
||||||
# Make sure TemperatureLogitsWarper will be created by temporarily
|
# Make sure TemperatureLogitsWarper will be created by temporarily
|
||||||
# setting temperature to a value != 1.
|
# setting temperature to a value != 1.
|
||||||
generation_config.temperature = 1.1
|
generation_config.temperature = 1.1
|
||||||
@ -291,7 +292,7 @@ def get_logits_warper_patch(self, generation_config):
|
|||||||
warpers = self._get_logits_warper_old(generation_config)
|
warpers = self._get_logits_warper_old(generation_config)
|
||||||
for i in range(len(warpers)):
|
for i in range(len(warpers)):
|
||||||
if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper':
|
if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper':
|
||||||
warpers[i] = TemperatureLogitsWarperWithDynatemp(temperature, generation_config.dynatemp)
|
warpers[i] = TemperatureLogitsWarperWithDynatemp(temperature, generation_config.dynamic_temperature, generation_config.dynamic_temperature_low)
|
||||||
|
|
||||||
warpers_to_add = LogitsProcessorList()
|
warpers_to_add = LogitsProcessorList()
|
||||||
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
|
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
|
||||||
@ -359,7 +360,8 @@ def get_logits_processor_patch(self, **kwargs):
|
|||||||
def generation_config_init_patch(self, **kwargs):
|
def generation_config_init_patch(self, **kwargs):
|
||||||
self.__init___old(**kwargs)
|
self.__init___old(**kwargs)
|
||||||
self.min_p = kwargs.pop("min_p", 0.0)
|
self.min_p = kwargs.pop("min_p", 0.0)
|
||||||
self.dynatemp = kwargs.pop("dynatemp", 0.0)
|
self.dynamic_temperature = kwargs.pop("dynamic_temperature", False)
|
||||||
|
self.dynamic_temperature_low = kwargs.pop("dynamic_temperature_low", 0.1)
|
||||||
self.tfs = kwargs.pop("tfs", 1.0)
|
self.tfs = kwargs.pop("tfs", 1.0)
|
||||||
self.top_a = kwargs.pop("top_a", 0.0)
|
self.top_a = kwargs.pop("top_a", 0.0)
|
||||||
self.mirostat_mode = kwargs.pop("mirostat_mode", 0)
|
self.mirostat_mode = kwargs.pop("mirostat_mode", 0)
|
||||||
|
@ -285,7 +285,7 @@ def get_reply_from_output_ids(output_ids, state, starting_from=0):
|
|||||||
|
|
||||||
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False):
|
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False):
|
||||||
generate_params = {}
|
generate_params = {}
|
||||||
for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynatemp', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'num_beams', 'length_penalty', 'early_stopping']:
|
for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynamic_temperature', 'dynamic_temperature_low', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'num_beams', 'length_penalty', 'early_stopping']:
|
||||||
generate_params[k] = state[k]
|
generate_params[k] = state[k]
|
||||||
|
|
||||||
if state['negative_prompt'] != '':
|
if state['negative_prompt'] != '':
|
||||||
|
@ -115,7 +115,8 @@ def list_interface_input_elements():
|
|||||||
'seed',
|
'seed',
|
||||||
'temperature',
|
'temperature',
|
||||||
'temperature_last',
|
'temperature_last',
|
||||||
'dynatemp',
|
'dynamic_temperature',
|
||||||
|
'dynamic_temperature_low',
|
||||||
'top_p',
|
'top_p',
|
||||||
'min_p',
|
'min_p',
|
||||||
'top_k',
|
'top_k',
|
||||||
|
@ -49,7 +49,8 @@ def create_ui(default_preset):
|
|||||||
shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
|
shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
|
||||||
shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
|
shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
|
||||||
shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
|
shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
|
||||||
shared.gradio['dynatemp'] = gr.Slider(0, 5, value=generate_params['dynatemp'], step=0.01, label='dynatemp')
|
shared.gradio['dynamic_temperature_low'] = gr.Slider(0.01, 5, value=generate_params['dynamic_temperature_low'], step=0.01, label='dynamic_temperature_low', info='Only used when dynamic_temperature is checked.')
|
||||||
|
shared.gradio['dynamic_temperature'] = gr.Checkbox(value=generate_params['dynamic_temperature'], label='dynamic_temperature')
|
||||||
shared.gradio['temperature_last'] = gr.Checkbox(value=generate_params['temperature_last'], label='temperature_last', info='Makes temperature the last sampler instead of the first.')
|
shared.gradio['temperature_last'] = gr.Checkbox(value=generate_params['temperature_last'], label='temperature_last', info='Makes temperature the last sampler instead of the first.')
|
||||||
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
|
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
|
||||||
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
|
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
temperature: 1.55
|
dynamic_temperature: true
|
||||||
|
dynamic_temperature_low: 0.1
|
||||||
|
temperature: 3
|
||||||
temperature_last: true
|
temperature_last: true
|
||||||
dynatemp: 1.45
|
|
||||||
min_p: 0.05
|
min_p: 0.05
|
||||||
|
Loading…
Reference in New Issue
Block a user