Implement CPU mode

This commit is contained in:
oobabooga 2023-01-09 10:58:46 -03:00
parent f2a548c098
commit 0e67ccf607
2 changed files with 31 additions and 14 deletions

View File

@ -15,6 +15,7 @@ Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.
* Chat mode for conversation and role playing.
* Load 13b/20b models in 8-bit mode.
* Load parameter presets from text files.
* Option to use the CPU instead of the GPU for generation.
## Installation
@ -89,6 +90,8 @@ Optionally, you can use the following command-line flags:
`--chat`: Launch the webui in chat mode.
`--cpu`: Use the CPU to generate text instead of the GPU.
## Presets
Inference settings presets can be created under `presets/` as text files. These files are detected automatically at startup.

View File

@ -16,6 +16,7 @@ parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
parser.add_argument('--chat', action='store_true', help='Launch the webui in chat mode.')
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
args = parser.parse_args()
loaded_preset = None
available_models = sorted(set(map(lambda x : str(x.name).replace('.pt', ''), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*')))))
@ -26,30 +27,37 @@ def load_model(model_name):
print(f"Loading {model_name}...")
t0 = time.time()
if args.cpu:
dtype = torch.float32
else:
dtype = torch.float16
# Loading the model
if Path(f"torch-dumps/{model_name}.pt").exists():
if not args.cpu and Path(f"torch-dumps/{model_name}.pt").exists():
print("Loading in .pt format...")
model = torch.load(Path(f"torch-dumps/{model_name}.pt")).cuda()
model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')):
if any(size in model_name.lower() for size in ('13b', '20b', '30b')):
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
else:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
elif model_name in ['gpt-j-6B']:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=dtype)
elif model_name in ['flan-t5', 't5-large']:
model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}")).cuda()
model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}"))
else:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=dtype)
# Loading the tokenizer
if model_name.lower().startswith('gpt4chan'):
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
elif model_name in ['flan-t5']:
elif model_name in ['flan-t5', 't5-large']:
tokenizer = T5Tokenizer.from_pretrained(Path(f"models/{model_name}/"))
else:
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
# Sending to the GPU
if not (args.cpu or any(size in model_name.lower() for size in ('13b', '20b', '30b'))):
model = model.cuda()
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer
@ -76,23 +84,29 @@ def generate_reply(question, temperature, max_length, inference_settings, select
model_name = selected_model
model = None
tokenizer = None
torch.cuda.empty_cache()
if not args.cpu:
torch.cuda.empty_cache()
model, tokenizer = load_model(model_name)
if inference_settings != loaded_preset:
with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
preset = infile.read()
loaded_preset = inference_settings
torch.cuda.empty_cache()
input_ids = tokenizer.encode(str(question), return_tensors='pt').cuda()
if not args.cpu:
torch.cuda.empty_cache()
input_ids = tokenizer.encode(str(question), return_tensors='pt').cuda()
cuda = ".cuda()"
else:
input_ids = tokenizer.encode(str(question), return_tensors='pt')
cuda = ""
if eos_token is None:
output = eval(f"model.generate(input_ids, {preset}).cuda()")
output = eval(f"model.generate(input_ids, {preset}){cuda}")
else:
n = tokenizer.encode(eos_token, return_tensors='pt')[0][1]
output = eval(f"model.generate(input_ids, eos_token_id={n}, {preset}).cuda()")
reply = tokenizer.decode(output[0], skip_special_tokens=True)
output = eval(f"model.generate(input_ids, eos_token_id={n}, {preset}){cuda}")
reply = tokenizer.decode(output[0], skip_special_tokens=True)
if model_name.lower().startswith('galactica'):
reply = fix_galactica(reply)
return reply, reply, 'Only applicable for gpt4chan.'