mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-26 03:22:30 +01:00
Add LoRA support
This commit is contained in:
parent
ee164d1821
commit
104293f411
11
css/main.css
11
css/main.css
@ -1,12 +1,15 @@
|
||||
.tabs.svelte-710i53 {
|
||||
margin-top: 0
|
||||
}
|
||||
|
||||
.py-6 {
|
||||
padding-top: 2.5rem
|
||||
}
|
||||
|
||||
.dark #refresh-button {
|
||||
background-color: #ffffff1f;
|
||||
}
|
||||
|
||||
#refresh-button {
|
||||
flex: none;
|
||||
margin: 0;
|
||||
@ -17,22 +20,28 @@
|
||||
border-radius: 10px;
|
||||
background-color: #0000000d;
|
||||
}
|
||||
|
||||
#download-label, #upload-label {
|
||||
min-height: 0
|
||||
}
|
||||
|
||||
#accordion {
|
||||
}
|
||||
|
||||
.dark svg {
|
||||
fill: white;
|
||||
}
|
||||
|
||||
svg {
|
||||
display: unset !important;
|
||||
vertical-align: middle !important;
|
||||
margin: 5px;
|
||||
}
|
||||
|
||||
ol li p, ul li p {
|
||||
display: inline-block;
|
||||
}
|
||||
#main, #parameters, #chat-settings, #interface-mode {
|
||||
|
||||
#main, #parameters, #chat-settings, #interface-mode, #lora {
|
||||
border: 0;
|
||||
}
|
||||
|
@ -101,6 +101,7 @@ def get_download_links_from_huggingface(model, branch):
|
||||
classifications = []
|
||||
has_pytorch = False
|
||||
has_safetensors = False
|
||||
is_lora = False
|
||||
while True:
|
||||
content = requests.get(f"{base}{page}{cursor.decode()}").content
|
||||
|
||||
@ -110,8 +111,10 @@ def get_download_links_from_huggingface(model, branch):
|
||||
|
||||
for i in range(len(dict)):
|
||||
fname = dict[i]['path']
|
||||
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
|
||||
is_lora = True
|
||||
|
||||
is_pytorch = re.match("pytorch_model.*\.bin", fname)
|
||||
is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
|
||||
is_safetensors = re.match("model.*\.safetensors", fname)
|
||||
is_tokenizer = re.match("tokenizer.*\.model", fname)
|
||||
is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer
|
||||
@ -130,6 +133,7 @@ def get_download_links_from_huggingface(model, branch):
|
||||
has_pytorch = True
|
||||
classifications.append('pytorch')
|
||||
|
||||
|
||||
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
|
||||
cursor = base64.b64encode(cursor)
|
||||
cursor = cursor.replace(b'=', b'%3D')
|
||||
@ -140,7 +144,7 @@ def get_download_links_from_huggingface(model, branch):
|
||||
if classifications[i] == 'pytorch':
|
||||
links.pop(i)
|
||||
|
||||
return links
|
||||
return links, is_lora
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = args.MODEL
|
||||
@ -159,15 +163,16 @@ if __name__ == '__main__':
|
||||
except ValueError as err_branch:
|
||||
print(f"Error: {err_branch}")
|
||||
sys.exit()
|
||||
|
||||
links, is_lora = get_download_links_from_huggingface(model, branch)
|
||||
base_folder = 'models' if not is_lora else 'loras'
|
||||
if branch != 'main':
|
||||
output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}')
|
||||
output_folder = Path(base_folder) / (model.split('/')[-1] + f'_{branch}')
|
||||
else:
|
||||
output_folder = Path("models") / model.split('/')[-1]
|
||||
output_folder = Path(base_folder) / model.split('/')[-1]
|
||||
if not output_folder.exists():
|
||||
output_folder.mkdir()
|
||||
|
||||
links = get_download_links_from_huggingface(model, branch)
|
||||
|
||||
# Downloading the files
|
||||
print(f"Downloading the model to {output_folder}")
|
||||
pool = multiprocessing.Pool(processes=args.threads)
|
||||
|
@ -11,6 +11,8 @@ from accelerate import infer_auto_device_map, init_empty_weights
|
||||
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
|
||||
BitsAndBytesConfig)
|
||||
|
||||
from peft import PeftModel
|
||||
|
||||
import modules.shared as shared
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
@ -2,7 +2,8 @@ import argparse
|
||||
|
||||
model = None
|
||||
tokenizer = None
|
||||
model_name = ""
|
||||
model_name = "None"
|
||||
lora_name = "None"
|
||||
soft_prompt_tensor = None
|
||||
soft_prompt = False
|
||||
is_RWKV = False
|
||||
|
@ -4,6 +4,7 @@ flexgen==0.1.7
|
||||
gradio==3.18.0
|
||||
markdown
|
||||
numpy
|
||||
peft==0.2.0
|
||||
requests
|
||||
rwkv==0.4.2
|
||||
safetensors==0.3.0
|
||||
|
25
server.py
25
server.py
@ -17,6 +17,7 @@ import modules.ui as ui
|
||||
from modules.html_generator import generate_chat_html
|
||||
from modules.models import load_model, load_soft_prompt
|
||||
from modules.text_generation import generate_reply
|
||||
from modules.LoRA import add_lora_to_model
|
||||
|
||||
# Loading custom settings
|
||||
settings_file = None
|
||||
@ -48,6 +49,9 @@ def get_available_extensions():
|
||||
def get_available_softprompts():
|
||||
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
|
||||
|
||||
def get_available_loras():
|
||||
return ['None'] + sorted([item.name for item in list(Path('loras/').glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=str.lower)
|
||||
|
||||
def load_model_wrapper(selected_model):
|
||||
if selected_model != shared.model_name:
|
||||
shared.model_name = selected_model
|
||||
@ -59,6 +63,13 @@ def load_model_wrapper(selected_model):
|
||||
|
||||
return selected_model
|
||||
|
||||
def load_lora_wrapper(selected_lora):
|
||||
if not shared.args.cpu:
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
add_lora_to_model(selected_lora)
|
||||
return selected_lora
|
||||
|
||||
def load_preset_values(preset_menu, return_dict=False):
|
||||
generate_params = {
|
||||
'do_sample': True,
|
||||
@ -181,6 +192,7 @@ available_models = get_available_models()
|
||||
available_presets = get_available_presets()
|
||||
available_characters = get_available_characters()
|
||||
available_softprompts = get_available_softprompts()
|
||||
available_loras = get_available_loras()
|
||||
|
||||
# Default extensions
|
||||
extensions_module.available_extensions = get_available_extensions()
|
||||
@ -401,6 +413,19 @@ def create_interface():
|
||||
shared.gradio['Stop'].click(None, None, None, cancels=gen_events)
|
||||
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.main_js}}}")
|
||||
|
||||
with gr.Tab("LoRA", elem_id="lora"):
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
gr.Markdown("Load")
|
||||
with gr.Row():
|
||||
shared.gradio['lora_menu'] = gr.Dropdown(choices=available_loras, value=shared.lora_name, label='LoRA')
|
||||
ui.create_refresh_button(shared.gradio['lora_menu'], lambda : None, lambda : {'choices': get_available_loras()}, 'refresh-button')
|
||||
with gr.Column():
|
||||
gr.Markdown("Train (TODO)")
|
||||
gr.Button("Practice your button clicking skills")
|
||||
|
||||
shared.gradio['lora_menu'].change(load_lora_wrapper, [shared.gradio['lora_menu']], [shared.gradio['lora_menu']], show_progress=True)
|
||||
|
||||
with gr.Tab("Interface mode", elem_id="interface-mode"):
|
||||
modes = ["default", "notebook", "chat", "cai_chat"]
|
||||
current_mode = "default"
|
||||
|
Loading…
Reference in New Issue
Block a user