mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-29 10:59:32 +01:00
Add model settings to the Models tab
This commit is contained in:
parent
4f7e88c043
commit
1566d8e344
@ -41,6 +41,7 @@ settings = {
|
|||||||
'truncation_length': 2048,
|
'truncation_length': 2048,
|
||||||
'truncation_length_min': 0,
|
'truncation_length_min': 0,
|
||||||
'truncation_length_max': 4096,
|
'truncation_length_max': 4096,
|
||||||
|
'mode': 'cai-chat',
|
||||||
'chat_prompt_size': 2048,
|
'chat_prompt_size': 2048,
|
||||||
'chat_prompt_size_min': 0,
|
'chat_prompt_size_min': 0,
|
||||||
'chat_prompt_size_max': 2048,
|
'chat_prompt_size_max': 2048,
|
||||||
@ -115,9 +116,6 @@ parser.add_argument('--wbits', type=int, default=0, help='GPTQ: Load a pre-quant
|
|||||||
parser.add_argument('--model_type', type=str, help='GPTQ: Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
|
parser.add_argument('--model_type', type=str, help='GPTQ: Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
|
||||||
parser.add_argument('--groupsize', type=int, default=-1, help='GPTQ: Group size.')
|
parser.add_argument('--groupsize', type=int, default=-1, help='GPTQ: Group size.')
|
||||||
parser.add_argument('--pre_layer', type=int, default=0, help='GPTQ: The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models.')
|
parser.add_argument('--pre_layer', type=int, default=0, help='GPTQ: The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models.')
|
||||||
parser.add_argument('--gptq-bits', type=int, default=0, help='DEPRECATED: use --wbits instead.')
|
|
||||||
parser.add_argument('--gptq-model-type', type=str, help='DEPRECATED: use --model_type instead.')
|
|
||||||
parser.add_argument('--gptq-pre-layer', type=int, default=0, help='DEPRECATED: use --pre_layer instead.')
|
|
||||||
|
|
||||||
# FlexGen
|
# FlexGen
|
||||||
parser.add_argument('--flexgen', action='store_true', help='Enable the use of FlexGen offloading.')
|
parser.add_argument('--flexgen', action='store_true', help='Enable the use of FlexGen offloading.')
|
||||||
@ -144,7 +142,7 @@ parser.add_argument("--gradio-auth-path", type=str, help='Set the gradio authent
|
|||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Deprecation warnings for parameters that have been renamed
|
# Deprecation warnings for parameters that have been renamed
|
||||||
deprecated_dict = {'gptq_bits': ['wbits', 0], 'gptq_model_type': ['model_type', None], 'gptq_pre_layer': ['prelayer', 0]}
|
deprecated_dict = {}
|
||||||
for k in deprecated_dict:
|
for k in deprecated_dict:
|
||||||
if eval(f"args.{k}") != deprecated_dict[k][1]:
|
if eval(f"args.{k}") != deprecated_dict[k][1]:
|
||||||
print(f"Warning: --{k} is deprecated and will be removed. Use --{deprecated_dict[k][0]} instead.")
|
print(f"Warning: --{k} is deprecated and will be removed. Use --{deprecated_dict[k][0]} instead.")
|
||||||
|
161
server.py
161
server.py
@ -5,6 +5,7 @@ os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
|||||||
import importlib
|
import importlib
|
||||||
import io
|
import io
|
||||||
import json
|
import json
|
||||||
|
import math
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
import sys
|
import sys
|
||||||
@ -15,6 +16,8 @@ from datetime import datetime
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
import psutil
|
||||||
|
import torch
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
import modules.extensions as extensions_module
|
import modules.extensions as extensions_module
|
||||||
@ -82,14 +85,16 @@ def get_available_loras():
|
|||||||
|
|
||||||
|
|
||||||
def load_model_wrapper(selected_model):
|
def load_model_wrapper(selected_model):
|
||||||
if selected_model != shared.model_name:
|
try:
|
||||||
|
yield f"Loading {selected_model}..."
|
||||||
shared.model_name = selected_model
|
shared.model_name = selected_model
|
||||||
|
|
||||||
unload_model()
|
unload_model()
|
||||||
if selected_model != '':
|
if selected_model != '':
|
||||||
shared.model, shared.tokenizer = load_model(shared.model_name)
|
shared.model, shared.tokenizer = load_model(shared.model_name)
|
||||||
|
|
||||||
return selected_model
|
yield f"Successfully loaded {selected_model}"
|
||||||
|
except:
|
||||||
|
yield traceback.format_exc()
|
||||||
|
|
||||||
|
|
||||||
def load_lora_wrapper(selected_lora):
|
def load_lora_wrapper(selected_lora):
|
||||||
@ -203,31 +208,117 @@ def download_model_wrapper(repo_id):
|
|||||||
yield traceback.format_exc()
|
yield traceback.format_exc()
|
||||||
|
|
||||||
|
|
||||||
|
def list_model_parameters():
|
||||||
|
return ['gpu_memory', 'cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'wbits', 'groupsize', 'model_type', 'pre_layer']
|
||||||
|
|
||||||
|
|
||||||
|
# Update the command-line arguments based on the interface values
|
||||||
|
def update_model_parameters(*args):
|
||||||
|
args = list(args)
|
||||||
|
elements = list_model_parameters()
|
||||||
|
|
||||||
|
for i, element in enumerate(elements):
|
||||||
|
if element in ['gpu_memory', 'cpu_memory'] and args[i] == 0:
|
||||||
|
args[i] = None
|
||||||
|
if element == 'wbits' and args[i] == 'None':
|
||||||
|
args[i] = 0
|
||||||
|
if element == 'groupsize' and args[i] == 'None':
|
||||||
|
args[i] = -1
|
||||||
|
if element == 'model_type' and args[i] == 'None':
|
||||||
|
args[i] = None
|
||||||
|
if element in ['wbits', 'groupsize', 'pre_layer']:
|
||||||
|
args[i] = int(args[i])
|
||||||
|
if element == 'gpu_memory' and args[i] is not None:
|
||||||
|
args[i] = [f"{args[i]}MiB"]
|
||||||
|
elif element == 'cpu_memory' and args[i] is not None:
|
||||||
|
args[i] = f"{args[i]}MiB"
|
||||||
|
|
||||||
|
#print(element, repr(eval(f"shared.args.{element}")), repr(args[i]))
|
||||||
|
#print(f"shared.args.{element} = args[i]")
|
||||||
|
exec(f"shared.args.{element} = args[i]")
|
||||||
|
#print()
|
||||||
|
|
||||||
def create_model_menus():
|
def create_model_menus():
|
||||||
|
|
||||||
|
# Finding the default values for the GPU and CPU memories
|
||||||
|
total_mem = math.floor(torch.cuda.get_device_properties(0).total_memory / (1024*1024))
|
||||||
|
total_cpu_mem = math.floor(psutil.virtual_memory().total / (1024*1024))
|
||||||
|
if shared.args.gpu_memory is not None and len(shared.args.gpu_memory) > 0:
|
||||||
|
default_gpu_mem = re.sub('[a-zA-Z ]', '', shared.args.gpu_memory[0])
|
||||||
|
else:
|
||||||
|
default_gpu_mem = 0
|
||||||
|
if shared.args.cpu_memory is not None:
|
||||||
|
default_cpu_mem = re.sub('[a-zA-Z ]', '', shared.args.cpu_memory)
|
||||||
|
else:
|
||||||
|
default_cpu_mem = 0
|
||||||
|
|
||||||
|
components = {}
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column():
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
shared.gradio['model_menu'] = gr.Dropdown(choices=available_models, value=shared.model_name, label='Model')
|
shared.gradio['model_menu'] = gr.Dropdown(choices=available_models, value=shared.model_name, label='Model')
|
||||||
ui.create_refresh_button(shared.gradio['model_menu'], lambda: None, lambda: {'choices': get_available_models()}, 'refresh-button')
|
ui.create_refresh_button(shared.gradio['model_menu'], lambda: None, lambda: {'choices': get_available_models()}, 'refresh-button')
|
||||||
|
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
shared.gradio['lora_menu'] = gr.Dropdown(choices=available_loras, value=shared.lora_name, label='LoRA')
|
shared.gradio['lora_menu'] = gr.Dropdown(choices=available_loras, value=shared.lora_name, label='LoRA')
|
||||||
ui.create_refresh_button(shared.gradio['lora_menu'], lambda: None, lambda: {'choices': get_available_loras()}, 'refresh-button')
|
ui.create_refresh_button(shared.gradio['lora_menu'], lambda: None, lambda: {'choices': get_available_loras()}, 'refresh-button')
|
||||||
with gr.Row():
|
|
||||||
with gr.Column():
|
|
||||||
with gr.Row():
|
|
||||||
with gr.Column():
|
|
||||||
shared.gradio['custom_model_menu'] = gr.Textbox(label="Download custom model or LoRA",
|
|
||||||
info="Enter Hugging Face username/model path, e.g: facebook/galactica-125m")
|
|
||||||
with gr.Column():
|
|
||||||
shared.gradio['download_button'] = gr.Button("Download")
|
|
||||||
shared.gradio['download_status'] = gr.Markdown()
|
|
||||||
with gr.Column():
|
|
||||||
pass
|
|
||||||
|
|
||||||
shared.gradio['model_menu'].change(load_model_wrapper, shared.gradio['model_menu'], shared.gradio['model_menu'], show_progress=True)
|
with gr.Column():
|
||||||
|
unload = gr.Button("Unload the model")
|
||||||
|
reload = gr.Button("Reload the model")
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column():
|
||||||
|
with gr.Box():
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column():
|
||||||
|
components['gpu_memory'] = gr.Slider(label="gpu-memory in MiB", maximum=total_mem, value=default_gpu_mem)
|
||||||
|
components['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
|
||||||
|
|
||||||
|
with gr.Column():
|
||||||
|
components['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
|
||||||
|
components['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
|
||||||
|
components['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu)
|
||||||
|
components['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
|
||||||
|
components['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
|
||||||
|
|
||||||
|
with gr.Column():
|
||||||
|
with gr.Box():
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column():
|
||||||
|
components['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
|
||||||
|
components['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
|
||||||
|
|
||||||
|
with gr.Column():
|
||||||
|
components['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gpt-j"], value=shared.args.model_type or "None")
|
||||||
|
components['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column():
|
||||||
|
shared.gradio['custom_model_menu'] = gr.Textbox(label="Download custom model or LoRA", info="Enter Hugging Face username/model path, e.g: facebook/galactica-125m")
|
||||||
|
shared.gradio['download_button'] = gr.Button("Download")
|
||||||
|
|
||||||
|
with gr.Column():
|
||||||
|
shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready')
|
||||||
|
|
||||||
|
shared.gradio['model_menu'].change(
|
||||||
|
update_model_parameters, [components[k] for k in list_model_parameters()], None).then(
|
||||||
|
load_model_wrapper, shared.gradio['model_menu'], shared.gradio['model_status'], show_progress=True)
|
||||||
|
|
||||||
|
unload.click(
|
||||||
|
unload_model, None, None).then(
|
||||||
|
lambda: "Model unloaded", None, shared.gradio['model_status'])
|
||||||
|
|
||||||
|
reload.click(
|
||||||
|
unload_model, None, None).then(
|
||||||
|
update_model_parameters, [components[k] for k in list_model_parameters()], None).then(
|
||||||
|
load_model_wrapper, shared.gradio['model_menu'], shared.gradio['model_status'], show_progress=True)
|
||||||
|
|
||||||
shared.gradio['lora_menu'].change(load_lora_wrapper, shared.gradio['lora_menu'], shared.gradio['lora_menu'], show_progress=True)
|
shared.gradio['lora_menu'].change(load_lora_wrapper, shared.gradio['lora_menu'], shared.gradio['lora_menu'], show_progress=True)
|
||||||
shared.gradio['download_button'].click(download_model_wrapper, shared.gradio['custom_model_menu'], shared.gradio['download_status'], show_progress=False)
|
shared.gradio['download_button'].click(download_model_wrapper, shared.gradio['custom_model_menu'], shared.gradio['model_status'], show_progress=False)
|
||||||
|
|
||||||
|
|
||||||
def create_settings_menus(default_preset):
|
def create_settings_menus(default_preset):
|
||||||
@ -333,20 +424,6 @@ else:
|
|||||||
# Default model
|
# Default model
|
||||||
if shared.args.model is not None:
|
if shared.args.model is not None:
|
||||||
shared.model_name = shared.args.model
|
shared.model_name = shared.args.model
|
||||||
else:
|
|
||||||
if len(available_models) == 0:
|
|
||||||
print('No models are available! Please download at least one.')
|
|
||||||
sys.exit(0)
|
|
||||||
elif len(available_models) == 1:
|
|
||||||
i = 0
|
|
||||||
else:
|
|
||||||
print('The following models are available:\n')
|
|
||||||
for i, model in enumerate(available_models):
|
|
||||||
print(f'{i+1}. {model}')
|
|
||||||
print(f'\nWhich one do you want to load? 1-{len(available_models)}\n')
|
|
||||||
i = int(input()) - 1
|
|
||||||
print()
|
|
||||||
shared.model_name = available_models[i]
|
|
||||||
shared.model, shared.tokenizer = load_model(shared.model_name)
|
shared.model, shared.tokenizer = load_model(shared.model_name)
|
||||||
if shared.args.lora:
|
if shared.args.lora:
|
||||||
add_lora_to_model(shared.args.lora)
|
add_lora_to_model(shared.args.lora)
|
||||||
@ -372,12 +449,12 @@ def create_interface():
|
|||||||
shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements})
|
shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements})
|
||||||
shared.gradio['Chat input'] = gr.State()
|
shared.gradio['Chat input'] = gr.State()
|
||||||
|
|
||||||
with gr.Tab("Text generation", elem_id="main"):
|
with gr.Tab('Text generation', elem_id='main'):
|
||||||
shared.gradio['display'] = gr.HTML(value=chat_html_wrapper(shared.history['visible'], shared.settings['name1'], shared.settings['name2'], 'cai-chat'))
|
shared.gradio['display'] = gr.HTML(value=chat_html_wrapper(shared.history['visible'], shared.settings['name1'], shared.settings['name2'], 'cai-chat'))
|
||||||
shared.gradio['textbox'] = gr.Textbox(label='Input')
|
shared.gradio['textbox'] = gr.Textbox(label='Input')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
shared.gradio['Generate'] = gr.Button('Generate', elem_id='Generate')
|
shared.gradio['Generate'] = gr.Button('Generate', elem_id='Generate')
|
||||||
shared.gradio['Stop'] = gr.Button('Stop', elem_id="stop")
|
shared.gradio['Stop'] = gr.Button('Stop', elem_id='stop')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
shared.gradio['Regenerate'] = gr.Button('Regenerate')
|
shared.gradio['Regenerate'] = gr.Button('Regenerate')
|
||||||
shared.gradio['Continue'] = gr.Button('Continue')
|
shared.gradio['Continue'] = gr.Button('Continue')
|
||||||
@ -389,24 +466,24 @@ def create_interface():
|
|||||||
shared.gradio['Copy last reply'] = gr.Button('Copy last reply')
|
shared.gradio['Copy last reply'] = gr.Button('Copy last reply')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
shared.gradio['Clear history'] = gr.Button('Clear history')
|
shared.gradio['Clear history'] = gr.Button('Clear history')
|
||||||
shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant="stop", visible=False)
|
shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant='stop', visible=False)
|
||||||
shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False)
|
shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False)
|
||||||
shared.gradio['Remove last'] = gr.Button('Remove last')
|
shared.gradio['Remove last'] = gr.Button('Remove last')
|
||||||
|
|
||||||
shared.gradio["mode"] = gr.Radio(choices=["cai-chat", "chat", "instruct"], value="cai-chat", label="Mode")
|
shared.gradio['mode'] = gr.Radio(choices=['cai-chat', 'chat', 'instruct'], value=shared.settings['mode'], label='Mode')
|
||||||
shared.gradio["Instruction templates"] = gr.Dropdown(choices=get_available_instruction_templates(), label="Instruction template", value="None", visible=False, info="Change this according to the model/LoRA that you are using.")
|
shared.gradio['Instruction templates'] = gr.Dropdown(choices=get_available_instruction_templates(), label='Instruction template', value='None', visible=False, info='Change this according to the model/LoRA that you are using.')
|
||||||
|
|
||||||
with gr.Tab("Character", elem_id="chat-settings"):
|
with gr.Tab('Character', elem_id='chat-settings'):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column(scale=8):
|
with gr.Column(scale=8):
|
||||||
shared.gradio['name1'] = gr.Textbox(value=shared.settings['name1'], lines=1, label='Your name')
|
shared.gradio['name1'] = gr.Textbox(value=shared.settings['name1'], lines=1, label='Your name')
|
||||||
shared.gradio['name2'] = gr.Textbox(value=shared.settings['name2'], lines=1, label='Character\'s name')
|
shared.gradio['name2'] = gr.Textbox(value=shared.settings['name2'], lines=1, label='Character\'s name')
|
||||||
shared.gradio['greeting'] = gr.Textbox(value=shared.settings['greeting'], lines=4, label='Greeting')
|
shared.gradio['greeting'] = gr.Textbox(value=shared.settings['greeting'], lines=4, label='Greeting')
|
||||||
shared.gradio['context'] = gr.Textbox(value=shared.settings['context'], lines=4, label='Context')
|
shared.gradio['context'] = gr.Textbox(value=shared.settings['context'], lines=4, label='Context')
|
||||||
shared.gradio['end_of_turn'] = gr.Textbox(value=shared.settings["end_of_turn"], lines=1, label='End of turn string')
|
shared.gradio['end_of_turn'] = gr.Textbox(value=shared.settings['end_of_turn'], lines=1, label='End of turn string')
|
||||||
with gr.Column(scale=1):
|
with gr.Column(scale=1):
|
||||||
shared.gradio['character_picture'] = gr.Image(label='Character picture', type="pil")
|
shared.gradio['character_picture'] = gr.Image(label='Character picture', type='pil')
|
||||||
shared.gradio['your_picture'] = gr.Image(label='Your picture', type="pil", value=Image.open(Path("cache/pfp_me.png")) if Path("cache/pfp_me.png").exists() else None)
|
shared.gradio['your_picture'] = gr.Image(label='Your picture', type='pil', value=Image.open(Path('cache/pfp_me.png')) if Path('cache/pfp_me.png').exists() else None)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
shared.gradio['character_menu'] = gr.Dropdown(choices=available_characters, value='None', label='Character', elem_id='character-menu')
|
shared.gradio['character_menu'] = gr.Dropdown(choices=available_characters, value='None', label='Character', elem_id='character-menu')
|
||||||
ui.create_refresh_button(shared.gradio['character_menu'], lambda: None, lambda: {'choices': get_available_characters()}, 'refresh-button')
|
ui.create_refresh_button(shared.gradio['character_menu'], lambda: None, lambda: {'choices': get_available_characters()}, 'refresh-button')
|
||||||
@ -422,7 +499,7 @@ def create_interface():
|
|||||||
shared.gradio['download'] = gr.File()
|
shared.gradio['download'] = gr.File()
|
||||||
shared.gradio['download_button'] = gr.Button(value='Click me')
|
shared.gradio['download_button'] = gr.Button(value='Click me')
|
||||||
with gr.Tab('Upload character'):
|
with gr.Tab('Upload character'):
|
||||||
gr.Markdown("# JSON format")
|
gr.Markdown('# JSON format')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
gr.Markdown('1. Select the JSON file')
|
gr.Markdown('1. Select the JSON file')
|
||||||
@ -432,7 +509,7 @@ def create_interface():
|
|||||||
shared.gradio['upload_img_bot'] = gr.File(type='binary', file_types=['image'])
|
shared.gradio['upload_img_bot'] = gr.File(type='binary', file_types=['image'])
|
||||||
shared.gradio['Upload character'] = gr.Button(value='Submit')
|
shared.gradio['Upload character'] = gr.Button(value='Submit')
|
||||||
|
|
||||||
gr.Markdown("# TavernAI PNG format")
|
gr.Markdown('# TavernAI PNG format')
|
||||||
shared.gradio['upload_img_tavern'] = gr.File(type='binary', file_types=['image'])
|
shared.gradio['upload_img_tavern'] = gr.File(type='binary', file_types=['image'])
|
||||||
|
|
||||||
with gr.Tab("Parameters", elem_id="parameters"):
|
with gr.Tab("Parameters", elem_id="parameters"):
|
||||||
@ -648,7 +725,7 @@ def create_interface():
|
|||||||
current_mode = mode
|
current_mode = mode
|
||||||
break
|
break
|
||||||
cmd_list = vars(shared.args)
|
cmd_list = vars(shared.args)
|
||||||
bool_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes]
|
bool_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes + list_model_parameters()]
|
||||||
bool_active = [k for k in bool_list if vars(shared.args)[k]]
|
bool_active = [k for k in bool_list if vars(shared.args)[k]]
|
||||||
|
|
||||||
gr.Markdown("*Experimental*")
|
gr.Markdown("*Experimental*")
|
||||||
|
@ -6,7 +6,7 @@
|
|||||||
"name1": "You",
|
"name1": "You",
|
||||||
"name2": "Assistant",
|
"name2": "Assistant",
|
||||||
"context": "This is a conversation with your Assistant. The Assistant is very helpful and is eager to chat with you and answer your questions.",
|
"context": "This is a conversation with your Assistant. The Assistant is very helpful and is eager to chat with you and answer your questions.",
|
||||||
"greeting": "Hello there!",
|
"greeting": "",
|
||||||
"end_of_turn": "",
|
"end_of_turn": "",
|
||||||
"custom_stopping_strings": "",
|
"custom_stopping_strings": "",
|
||||||
"stop_at_newline": false,
|
"stop_at_newline": false,
|
||||||
@ -15,6 +15,7 @@
|
|||||||
"truncation_length": 2048,
|
"truncation_length": 2048,
|
||||||
"truncation_length_min": 0,
|
"truncation_length_min": 0,
|
||||||
"truncation_length_max": 4096,
|
"truncation_length_max": 4096,
|
||||||
|
"mode": "cai-chat",
|
||||||
"chat_prompt_size": 2048,
|
"chat_prompt_size": 2048,
|
||||||
"chat_prompt_size_min": 0,
|
"chat_prompt_size_min": 0,
|
||||||
"chat_prompt_size_max": 2048,
|
"chat_prompt_size_max": 2048,
|
||||||
|
Loading…
Reference in New Issue
Block a user