mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Update GPTQ-models-(4-bit-mode).md
This commit is contained in:
parent
962d05ca7e
commit
166a0d9893
@ -1,13 +1,10 @@
|
|||||||
In 4-bit mode, models are loaded with just 25% of their regular VRAM usage. So LLaMA-7B fits into a 6GB GPU, and LLaMA-30B fits into a 24GB GPU.
|
|
||||||
|
|
||||||
|
|
||||||
GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323
|
GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323
|
||||||
|
|
||||||
## AutoGPTQ
|
## AutoGPTQ
|
||||||
|
|
||||||
AutoGPTQ is the recommended way to create new quantized models: https://github.com/PanQiWei/AutoGPTQ
|
AutoGPTQ is the recommended way to create new quantized models: https://github.com/PanQiWei/AutoGPTQ
|
||||||
|
|
||||||
#### Installation
|
### Installation
|
||||||
|
|
||||||
To load a model quantized with AutoGPTQ in the web UI, manual installation is currently necessary:
|
To load a model quantized with AutoGPTQ in the web UI, manual installation is currently necessary:
|
||||||
|
|
||||||
@ -19,7 +16,7 @@ pip install .
|
|||||||
|
|
||||||
You are going to need to have `nvcc` installed (see the [instructions below](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-0-install-nvcc)).
|
You are going to need to have `nvcc` installed (see the [instructions below](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-0-install-nvcc)).
|
||||||
|
|
||||||
#### Usage
|
### Usage
|
||||||
|
|
||||||
Place the output folder generated by AutoGPTQ in your `models/` folder and load it with the `--autogptq` flag:
|
Place the output folder generated by AutoGPTQ in your `models/` folder and load it with the `--autogptq` flag:
|
||||||
|
|
||||||
@ -29,9 +26,9 @@ python server.py --autogptq --model model_name
|
|||||||
|
|
||||||
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model.
|
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model.
|
||||||
|
|
||||||
#### Offloading
|
### Offloading
|
||||||
|
|
||||||
In order to do CPU offloading or multi-cpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA.
|
In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA (more on that below).
|
||||||
|
|
||||||
For CPU offloading:
|
For CPU offloading:
|
||||||
|
|
||||||
@ -45,7 +42,7 @@ For multi-GPU:
|
|||||||
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name
|
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Applying LoRAs
|
### Using LoRAs with AutoGPTQ
|
||||||
|
|
||||||
Not supported yet.
|
Not supported yet.
|
||||||
|
|
||||||
@ -63,7 +60,11 @@ Different branches of GPTQ-for-LLaMa are currently available, including:
|
|||||||
|
|
||||||
Overall, I recommend using the old CUDA branch. It is included by default in the one-click-installer for this web UI.
|
Overall, I recommend using the old CUDA branch. It is included by default in the one-click-installer for this web UI.
|
||||||
|
|
||||||
### Installation
|
### Installation using precompiled wheels
|
||||||
|
|
||||||
|
https://github.com/jllllll/GPTQ-for-LLaMa-Wheels
|
||||||
|
|
||||||
|
### Manual installation
|
||||||
|
|
||||||
#### Step 0: install nvcc
|
#### Step 0: install nvcc
|
||||||
|
|
||||||
@ -158,18 +159,11 @@ You can also use multiple GPUs with `pre_layer` if using the oobabooga fork of G
|
|||||||
|
|
||||||
### Using LoRAs with GPTQ-for-LLaMa
|
### Using LoRAs with GPTQ-for-LLaMa
|
||||||
|
|
||||||
At the moment, this feature is not officially supported by the relevant libraries, but a patch exists and is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit
|
This requires using a monkey patch that is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit
|
||||||
|
|
||||||
In order to use it:
|
To use it:
|
||||||
|
|
||||||
1. Make sure that your requirements are up to date:
|
1. Clone `johnsmith0031/alpaca_lora_4bit` into the repositories folder:
|
||||||
|
|
||||||
```
|
|
||||||
cd text-generation-webui
|
|
||||||
pip install -r requirements.txt --upgrade
|
|
||||||
```
|
|
||||||
|
|
||||||
2. Clone `johnsmith0031/alpaca_lora_4bit` into the repositories folder:
|
|
||||||
|
|
||||||
```
|
```
|
||||||
cd text-generation-webui/repositories
|
cd text-generation-webui/repositories
|
||||||
@ -178,13 +172,13 @@ git clone https://github.com/johnsmith0031/alpaca_lora_4bit
|
|||||||
|
|
||||||
⚠️ I have tested it with the following commit specifically: `2f704b93c961bf202937b10aac9322b092afdce0`
|
⚠️ I have tested it with the following commit specifically: `2f704b93c961bf202937b10aac9322b092afdce0`
|
||||||
|
|
||||||
3. Install https://github.com/sterlind/GPTQ-for-LLaMa with this command:
|
2. Install https://github.com/sterlind/GPTQ-for-LLaMa with this command:
|
||||||
|
|
||||||
```
|
```
|
||||||
pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
|
pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
|
||||||
```
|
```
|
||||||
|
|
||||||
4. Start the UI with the `--monkey-patch` flag:
|
3. Start the UI with the `--monkey-patch` flag:
|
||||||
|
|
||||||
```
|
```
|
||||||
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
|
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
|
||||||
|
Loading…
Reference in New Issue
Block a user