mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Add proper streaming to RWKV
This commit is contained in:
parent
8660227e1b
commit
19a34941ed
@ -1,5 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from queue import Queue
|
||||||
|
from threading import Thread
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from tokenizers import Tokenizer
|
from tokenizers import Tokenizer
|
||||||
@ -33,7 +35,7 @@ class RWKVModel:
|
|||||||
result.pipeline = pipeline
|
result.pipeline = pipeline
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def generate(self, context, token_count=20, temperature=1, top_p=1, top_k=50, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None):
|
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None):
|
||||||
args = PIPELINE_ARGS(
|
args = PIPELINE_ARGS(
|
||||||
temperature = temperature,
|
temperature = temperature,
|
||||||
top_p = top_p,
|
top_p = top_p,
|
||||||
@ -46,6 +48,13 @@ class RWKVModel:
|
|||||||
|
|
||||||
return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
|
return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
|
||||||
|
|
||||||
|
def generate_with_streaming(self, **kwargs):
|
||||||
|
iterable = Iteratorize(self.generate, kwargs, callback=None)
|
||||||
|
reply = kwargs['context']
|
||||||
|
for token in iterable:
|
||||||
|
reply += token
|
||||||
|
yield reply
|
||||||
|
|
||||||
class RWKVTokenizer:
|
class RWKVTokenizer:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
pass
|
pass
|
||||||
@ -64,3 +73,38 @@ class RWKVTokenizer:
|
|||||||
|
|
||||||
def decode(self, ids):
|
def decode(self, ids):
|
||||||
return self.tokenizer.decode(ids)
|
return self.tokenizer.decode(ids)
|
||||||
|
|
||||||
|
class Iteratorize:
|
||||||
|
|
||||||
|
"""
|
||||||
|
Transforms a function that takes a callback
|
||||||
|
into a lazy iterator (generator).
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, func, kwargs={}, callback=None):
|
||||||
|
self.mfunc=func
|
||||||
|
self.c_callback=callback
|
||||||
|
self.q = Queue(maxsize=1)
|
||||||
|
self.sentinel = object()
|
||||||
|
self.kwargs = kwargs
|
||||||
|
|
||||||
|
def _callback(val):
|
||||||
|
self.q.put(val)
|
||||||
|
|
||||||
|
def gentask():
|
||||||
|
ret = self.mfunc(callback=_callback, **self.kwargs)
|
||||||
|
self.q.put(self.sentinel)
|
||||||
|
if self.c_callback:
|
||||||
|
self.c_callback(ret)
|
||||||
|
|
||||||
|
Thread(target=gentask).start()
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
obj = self.q.get(True,None)
|
||||||
|
if obj is self.sentinel:
|
||||||
|
raise StopIteration
|
||||||
|
else:
|
||||||
|
return obj
|
||||||
|
@ -92,17 +92,17 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||||||
# separately and terminate the function call earlier
|
# separately and terminate the function call earlier
|
||||||
if shared.is_RWKV:
|
if shared.is_RWKV:
|
||||||
if shared.args.no_stream:
|
if shared.args.no_stream:
|
||||||
reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
|
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
|
||||||
t1 = time.time()
|
|
||||||
print(f"Output generated in {(t1-t0):.2f} seconds.")
|
|
||||||
yield formatted_outputs(reply, shared.model_name)
|
yield formatted_outputs(reply, shared.model_name)
|
||||||
else:
|
else:
|
||||||
yield formatted_outputs(question, shared.model_name)
|
yield formatted_outputs(question, shared.model_name)
|
||||||
for i in tqdm(range(max_new_tokens//8+1)):
|
# RWKV has proper streaming, which is very nice.
|
||||||
clear_torch_cache()
|
# No need to generate 8 tokens at a time.
|
||||||
reply = shared.model.generate(question, token_count=8, temperature=temperature, top_p=top_p, top_k=top_k)
|
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k):
|
||||||
yield formatted_outputs(reply, shared.model_name)
|
yield formatted_outputs(reply, shared.model_name)
|
||||||
question = reply
|
|
||||||
|
t1 = time.time()
|
||||||
|
print(f"Output generated in {(t1-t0):.2f} seconds.")
|
||||||
return
|
return
|
||||||
|
|
||||||
original_question = question
|
original_question = question
|
||||||
|
Loading…
Reference in New Issue
Block a user