mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Make it possible to download protected HF models from the command line. (#2408)
This commit is contained in:
parent
419c34eca4
commit
1aed2b9e52
@ -156,7 +156,9 @@ For example:
|
||||
|
||||
python download-model.py facebook/opt-1.3b
|
||||
|
||||
If you want to download a model manually, note that all you need are the json, txt, and pytorch\*.bin (or model*.safetensors) files. The remaining files are not necessary.
|
||||
* If you want to download a model manually, note that all you need are the json, txt, and pytorch\*.bin (or model*.safetensors) files. The remaining files are not necessary.
|
||||
|
||||
* If you want to download a protected model (one gated behind accepting a license or otherwise private, like `bigcode/starcoder`) you can set the environment variables `HF_USER` to your huggingface username and `HF_PASS` to your password or (_as a better option_) to a [User Access Token](https://huggingface.co/settings/tokens). Note that you will need to accept the model terms on the Hugging Face website before starting the download.
|
||||
|
||||
#### GGML models
|
||||
|
||||
|
@ -12,6 +12,7 @@ import datetime
|
||||
import hashlib
|
||||
import json
|
||||
import re
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
@ -70,173 +71,183 @@ EleutherAI/pythia-1.4b-deduped
|
||||
return model, branch
|
||||
|
||||
|
||||
def sanitize_model_and_branch_names(model, branch):
|
||||
if model[-1] == '/':
|
||||
model = model[:-1]
|
||||
if branch is None:
|
||||
branch = "main"
|
||||
else:
|
||||
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
|
||||
if not pattern.match(branch):
|
||||
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
|
||||
|
||||
return model, branch
|
||||
class ModelDownloader:
|
||||
def __init__(self):
|
||||
self.s = requests.Session()
|
||||
if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None:
|
||||
self.s.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS'))
|
||||
|
||||
|
||||
def get_download_links_from_huggingface(model, branch, text_only=False):
|
||||
base = "https://huggingface.co"
|
||||
page = f"/api/models/{model}/tree/{branch}"
|
||||
cursor = b""
|
||||
def sanitize_model_and_branch_names(self, model, branch):
|
||||
if model[-1] == '/':
|
||||
model = model[:-1]
|
||||
|
||||
links = []
|
||||
sha256 = []
|
||||
classifications = []
|
||||
has_pytorch = False
|
||||
has_pt = False
|
||||
has_ggml = False
|
||||
has_safetensors = False
|
||||
is_lora = False
|
||||
while True:
|
||||
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
|
||||
r = requests.get(url, timeout=10)
|
||||
r.raise_for_status()
|
||||
content = r.content
|
||||
if branch is None:
|
||||
branch = "main"
|
||||
else:
|
||||
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
|
||||
if not pattern.match(branch):
|
||||
raise ValueError(
|
||||
"Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
|
||||
|
||||
dict = json.loads(content)
|
||||
if len(dict) == 0:
|
||||
break
|
||||
|
||||
for i in range(len(dict)):
|
||||
fname = dict[i]['path']
|
||||
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
|
||||
is_lora = True
|
||||
|
||||
is_pytorch = re.match("(pytorch|adapter|gptq)_model.*\.bin", fname)
|
||||
is_safetensors = re.match(".*\.safetensors", fname)
|
||||
is_pt = re.match(".*\.pt", fname)
|
||||
is_ggml = re.match(".*ggml.*\.bin", fname)
|
||||
is_tokenizer = re.match("(tokenizer|ice).*\.model", fname)
|
||||
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
|
||||
|
||||
if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
|
||||
if 'lfs' in dict[i]:
|
||||
sha256.append([fname, dict[i]['lfs']['oid']])
|
||||
if is_text:
|
||||
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
||||
classifications.append('text')
|
||||
continue
|
||||
if not text_only:
|
||||
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
||||
if is_safetensors:
|
||||
has_safetensors = True
|
||||
classifications.append('safetensors')
|
||||
elif is_pytorch:
|
||||
has_pytorch = True
|
||||
classifications.append('pytorch')
|
||||
elif is_pt:
|
||||
has_pt = True
|
||||
classifications.append('pt')
|
||||
elif is_ggml:
|
||||
has_ggml = True
|
||||
classifications.append('ggml')
|
||||
|
||||
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
|
||||
cursor = base64.b64encode(cursor)
|
||||
cursor = cursor.replace(b'=', b'%3D')
|
||||
|
||||
# If both pytorch and safetensors are available, download safetensors only
|
||||
if (has_pytorch or has_pt) and has_safetensors:
|
||||
for i in range(len(classifications) - 1, -1, -1):
|
||||
if classifications[i] in ['pytorch', 'pt']:
|
||||
links.pop(i)
|
||||
|
||||
return links, sha256, is_lora
|
||||
return model, branch
|
||||
|
||||
|
||||
def get_output_folder(model, branch, is_lora, base_folder=None):
|
||||
if base_folder is None:
|
||||
base_folder = 'models' if not is_lora else 'loras'
|
||||
def get_download_links_from_huggingface(self, model, branch, text_only=False):
|
||||
base = "https://huggingface.co"
|
||||
page = f"/api/models/{model}/tree/{branch}"
|
||||
cursor = b""
|
||||
|
||||
output_folder = f"{'_'.join(model.split('/')[-2:])}"
|
||||
if branch != 'main':
|
||||
output_folder += f'_{branch}'
|
||||
output_folder = Path(base_folder) / output_folder
|
||||
return output_folder
|
||||
links = []
|
||||
sha256 = []
|
||||
classifications = []
|
||||
has_pytorch = False
|
||||
has_pt = False
|
||||
has_ggml = False
|
||||
has_safetensors = False
|
||||
is_lora = False
|
||||
while True:
|
||||
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
|
||||
r = self.s.get(url, timeout=10)
|
||||
r.raise_for_status()
|
||||
content = r.content
|
||||
|
||||
dict = json.loads(content)
|
||||
if len(dict) == 0:
|
||||
break
|
||||
|
||||
for i in range(len(dict)):
|
||||
fname = dict[i]['path']
|
||||
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
|
||||
is_lora = True
|
||||
|
||||
is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
|
||||
is_safetensors = re.match(".*\.safetensors", fname)
|
||||
is_pt = re.match(".*\.pt", fname)
|
||||
is_ggml = re.match(".*ggml.*\.bin", fname)
|
||||
is_tokenizer = re.match("(tokenizer|ice).*\.model", fname)
|
||||
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
|
||||
if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
|
||||
if 'lfs' in dict[i]:
|
||||
sha256.append([fname, dict[i]['lfs']['oid']])
|
||||
|
||||
if is_text:
|
||||
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
||||
classifications.append('text')
|
||||
continue
|
||||
|
||||
if not text_only:
|
||||
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
||||
if is_safetensors:
|
||||
has_safetensors = True
|
||||
classifications.append('safetensors')
|
||||
elif is_pytorch:
|
||||
has_pytorch = True
|
||||
classifications.append('pytorch')
|
||||
elif is_pt:
|
||||
has_pt = True
|
||||
classifications.append('pt')
|
||||
elif is_ggml:
|
||||
has_ggml = True
|
||||
classifications.append('ggml')
|
||||
|
||||
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
|
||||
cursor = base64.b64encode(cursor)
|
||||
cursor = cursor.replace(b'=', b'%3D')
|
||||
|
||||
# If both pytorch and safetensors are available, download safetensors only
|
||||
if (has_pytorch or has_pt) and has_safetensors:
|
||||
for i in range(len(classifications) - 1, -1, -1):
|
||||
if classifications[i] in ['pytorch', 'pt']:
|
||||
links.pop(i)
|
||||
|
||||
return links, sha256, is_lora
|
||||
|
||||
|
||||
def get_single_file(url, output_folder, start_from_scratch=False):
|
||||
filename = Path(url.rsplit('/', 1)[1])
|
||||
output_path = output_folder / filename
|
||||
if output_path.exists() and not start_from_scratch:
|
||||
# Check if the file has already been downloaded completely
|
||||
r = requests.get(url, stream=True, timeout=10)
|
||||
total_size = int(r.headers.get('content-length', 0))
|
||||
if output_path.stat().st_size >= total_size:
|
||||
return
|
||||
# Otherwise, resume the download from where it left off
|
||||
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
|
||||
mode = 'ab'
|
||||
else:
|
||||
headers = {}
|
||||
mode = 'wb'
|
||||
def get_output_folder(self, model, branch, is_lora, base_folder=None):
|
||||
if base_folder is None:
|
||||
base_folder = 'models' if not is_lora else 'loras'
|
||||
|
||||
r = requests.get(url, stream=True, headers=headers, timeout=10)
|
||||
with open(output_path, mode) as f:
|
||||
total_size = int(r.headers.get('content-length', 0))
|
||||
block_size = 1024
|
||||
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
|
||||
for data in r.iter_content(block_size):
|
||||
t.update(len(data))
|
||||
f.write(data)
|
||||
output_folder = f"{'_'.join(model.split('/')[-2:])}"
|
||||
if branch != 'main':
|
||||
output_folder += f'_{branch}'
|
||||
output_folder = Path(base_folder) / output_folder
|
||||
return output_folder
|
||||
|
||||
|
||||
def start_download_threads(file_list, output_folder, start_from_scratch=False, threads=1):
|
||||
thread_map(lambda url: get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
|
||||
def get_single_file(self, url, output_folder, start_from_scratch=False):
|
||||
filename = Path(url.rsplit('/', 1)[1])
|
||||
output_path = output_folder / filename
|
||||
if output_path.exists() and not start_from_scratch:
|
||||
# Check if the file has already been downloaded completely
|
||||
r = self.s.get(url, stream=True, timeout=10)
|
||||
total_size = int(r.headers.get('content-length', 0))
|
||||
if output_path.stat().st_size >= total_size:
|
||||
return
|
||||
# Otherwise, resume the download from where it left off
|
||||
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
|
||||
mode = 'ab'
|
||||
else:
|
||||
headers = {}
|
||||
mode = 'wb'
|
||||
|
||||
r = self.s.get(url, stream=True, headers=headers, timeout=10)
|
||||
with open(output_path, mode) as f:
|
||||
total_size = int(r.headers.get('content-length', 0))
|
||||
block_size = 1024
|
||||
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
|
||||
for data in r.iter_content(block_size):
|
||||
t.update(len(data))
|
||||
f.write(data)
|
||||
|
||||
|
||||
def download_model_files(model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1):
|
||||
# Creating the folder and writing the metadata
|
||||
if not output_folder.exists():
|
||||
output_folder.mkdir(parents=True, exist_ok=True)
|
||||
with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
|
||||
f.write(f'url: https://huggingface.co/{model}\n')
|
||||
f.write(f'branch: {branch}\n')
|
||||
f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
|
||||
sha256_str = ''
|
||||
def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=1):
|
||||
thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
|
||||
|
||||
|
||||
def download_model_files(self, model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1):
|
||||
# Creating the folder and writing the metadata
|
||||
if not output_folder.exists():
|
||||
output_folder.mkdir(parents=True, exist_ok=True)
|
||||
with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
|
||||
f.write(f'url: https://huggingface.co/{model}\n')
|
||||
f.write(f'branch: {branch}\n')
|
||||
f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
|
||||
sha256_str = ''
|
||||
for i in range(len(sha256)):
|
||||
sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n'
|
||||
if sha256_str != '':
|
||||
f.write(f'sha256sum:\n{sha256_str}')
|
||||
|
||||
# Downloading the files
|
||||
print(f"Downloading the model to {output_folder}")
|
||||
self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
|
||||
|
||||
|
||||
def check_model_files(self, model, branch, links, sha256, output_folder):
|
||||
# Validate the checksums
|
||||
validated = True
|
||||
for i in range(len(sha256)):
|
||||
sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n'
|
||||
if sha256_str != '':
|
||||
f.write(f'sha256sum:\n{sha256_str}')
|
||||
fpath = (output_folder / sha256[i][0])
|
||||
|
||||
# Downloading the files
|
||||
print(f"Downloading the model to {output_folder}")
|
||||
start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
|
||||
|
||||
|
||||
def check_model_files(model, branch, links, sha256, output_folder):
|
||||
# Validate the checksums
|
||||
validated = True
|
||||
for i in range(len(sha256)):
|
||||
fpath = (output_folder / sha256[i][0])
|
||||
|
||||
if not fpath.exists():
|
||||
print(f"The following file is missing: {fpath}")
|
||||
validated = False
|
||||
continue
|
||||
|
||||
with open(output_folder / sha256[i][0], "rb") as f:
|
||||
bytes = f.read()
|
||||
file_hash = hashlib.sha256(bytes).hexdigest()
|
||||
if file_hash != sha256[i][1]:
|
||||
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}')
|
||||
if not fpath.exists():
|
||||
print(f"The following file is missing: {fpath}")
|
||||
validated = False
|
||||
else:
|
||||
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}')
|
||||
continue
|
||||
|
||||
if validated:
|
||||
print('[+] Validated checksums of all model files!')
|
||||
else:
|
||||
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')
|
||||
with open(output_folder / sha256[i][0], "rb") as f:
|
||||
bytes = f.read()
|
||||
file_hash = hashlib.sha256(bytes).hexdigest()
|
||||
if file_hash != sha256[i][1]:
|
||||
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}')
|
||||
validated = False
|
||||
else:
|
||||
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}')
|
||||
|
||||
if validated:
|
||||
print('[+] Validated checksums of all model files!')
|
||||
else:
|
||||
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -256,22 +267,23 @@ if __name__ == '__main__':
|
||||
if model is None:
|
||||
model, branch = select_model_from_default_options()
|
||||
|
||||
downloader = ModelDownloader()
|
||||
# Cleaning up the model/branch names
|
||||
try:
|
||||
model, branch = sanitize_model_and_branch_names(model, branch)
|
||||
model, branch = downloader.sanitize_model_and_branch_names(model, branch)
|
||||
except ValueError as err_branch:
|
||||
print(f"Error: {err_branch}")
|
||||
sys.exit()
|
||||
|
||||
# Getting the download links from Hugging Face
|
||||
links, sha256, is_lora = get_download_links_from_huggingface(model, branch, text_only=args.text_only)
|
||||
links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=args.text_only)
|
||||
|
||||
# Getting the output folder
|
||||
output_folder = get_output_folder(model, branch, is_lora, base_folder=args.output)
|
||||
output_folder = downloader.get_output_folder(model, branch, is_lora, base_folder=args.output)
|
||||
|
||||
if args.check:
|
||||
# Check previously downloaded files
|
||||
check_model_files(model, branch, links, sha256, output_folder)
|
||||
downloader.check_model_files(model, branch, links, sha256, output_folder)
|
||||
else:
|
||||
# Download files
|
||||
download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)
|
||||
downloader.download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)
|
||||
|
@ -184,7 +184,8 @@ def count_tokens(text):
|
||||
|
||||
def download_model_wrapper(repo_id):
|
||||
try:
|
||||
downloader = importlib.import_module("download-model")
|
||||
downloader_module = importlib.import_module("download-model")
|
||||
downloader = downloader_module.ModelDownloader()
|
||||
repo_id_parts = repo_id.split(":")
|
||||
model = repo_id_parts[0] if len(repo_id_parts) > 0 else repo_id
|
||||
branch = repo_id_parts[1] if len(repo_id_parts) > 1 else "main"
|
||||
|
Loading…
Reference in New Issue
Block a user