mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Further refactor
This commit is contained in:
parent
ce7feb3641
commit
1dacd34165
@ -6,7 +6,6 @@ Converts a transformers model to a format compatible with flexgen.
|
|||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from sys import argv
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
@ -12,7 +12,6 @@ https://gist.github.com/81300/fe5b08bff1cba45296a829b9d6b0f303
|
|||||||
'''
|
'''
|
||||||
import argparse
|
import argparse
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from sys import argv
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from transformers import AutoModelForCausalLM
|
from transformers import AutoModelForCausalLM
|
||||||
|
@ -1,6 +1,4 @@
|
|||||||
import requests
|
|
||||||
import torch
|
import torch
|
||||||
from PIL import Image
|
|
||||||
from transformers import BlipForConditionalGeneration
|
from transformers import BlipForConditionalGeneration
|
||||||
from transformers import BlipProcessor
|
from transformers import BlipProcessor
|
||||||
|
|
||||||
|
@ -1,7 +1,10 @@
|
|||||||
|
import base64
|
||||||
|
import copy
|
||||||
import io
|
import io
|
||||||
import json
|
import json
|
||||||
import re
|
import re
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from io import BytesIO
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
@ -10,6 +13,7 @@ from modules.html_generator import generate_chat_html
|
|||||||
from modules.text_generation import encode
|
from modules.text_generation import encode
|
||||||
from modules.text_generation import generate_reply
|
from modules.text_generation import generate_reply
|
||||||
from modules.text_generation import get_max_prompt_length
|
from modules.text_generation import get_max_prompt_length
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
if shared.args.picture and (shared.args.cai_chat or shared.args.chat):
|
if shared.args.picture and (shared.args.cai_chat or shared.args.chat):
|
||||||
import modules.bot_picture as bot_picture
|
import modules.bot_picture as bot_picture
|
||||||
@ -328,8 +332,8 @@ def load_character(_character, name1, name2):
|
|||||||
history['visible'] += [['', "Hello there!"]]
|
history['visible'] += [['', "Hello there!"]]
|
||||||
else:
|
else:
|
||||||
character = None
|
character = None
|
||||||
context = settings['context_pygmalion']
|
context = shared.settings['context_pygmalion']
|
||||||
name2 = settings['name2_pygmalion']
|
name2 = shared.settings['name2_pygmalion']
|
||||||
|
|
||||||
if Path(f'logs/{character}_persistent.json').exists():
|
if Path(f'logs/{character}_persistent.json').exists():
|
||||||
load_history(open(Path(f'logs/{character}_persistent.json'), 'rb').read(), name1, name2)
|
load_history(open(Path(f'logs/{character}_persistent.json'), 'rb').read(), name1, name2)
|
||||||
|
143
modules/models.py
Normal file
143
modules/models.py
Normal file
@ -0,0 +1,143 @@
|
|||||||
|
import json
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import zipfile
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import modules.shared as shared
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from transformers import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
local_rank = None
|
||||||
|
|
||||||
|
if shared.args.flexgen:
|
||||||
|
from flexgen.flex_opt import (Policy, OptLM, TorchDevice, TorchDisk, TorchMixedDevice, CompressionConfig, Env, get_opt_config)
|
||||||
|
|
||||||
|
if shared.args.deepspeed:
|
||||||
|
import deepspeed
|
||||||
|
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_zero3_enabled
|
||||||
|
from modules.deepspeed_parameters import generate_ds_config
|
||||||
|
|
||||||
|
# Distributed setup
|
||||||
|
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
|
||||||
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
||||||
|
torch.cuda.set_device(local_rank)
|
||||||
|
deepspeed.init_distributed()
|
||||||
|
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
|
||||||
|
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
||||||
|
|
||||||
|
def load_model(model_name):
|
||||||
|
print(f"Loading {model_name}...")
|
||||||
|
t0 = time.time()
|
||||||
|
|
||||||
|
# Default settings
|
||||||
|
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen):
|
||||||
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
||||||
|
else:
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
|
||||||
|
|
||||||
|
# FlexGen
|
||||||
|
elif shared.args.flexgen:
|
||||||
|
gpu = TorchDevice("cuda:0")
|
||||||
|
cpu = TorchDevice("cpu")
|
||||||
|
disk = TorchDisk(shared.args.disk_cache_dir)
|
||||||
|
env = Env(gpu=gpu, cpu=cpu, disk=disk, mixed=TorchMixedDevice([gpu, cpu, disk]))
|
||||||
|
|
||||||
|
# Offloading policy
|
||||||
|
policy = Policy(1, 1,
|
||||||
|
shared.args.percent[0], shared.args.percent[1],
|
||||||
|
shared.args.percent[2], shared.args.percent[3],
|
||||||
|
shared.args.percent[4], shared.args.percent[5],
|
||||||
|
overlap=True, sep_layer=True, pin_weight=True,
|
||||||
|
cpu_cache_compute=False, attn_sparsity=1.0,
|
||||||
|
compress_weight=shared.args.compress_weight,
|
||||||
|
comp_weight_config=CompressionConfig(
|
||||||
|
num_bits=4, group_size=64,
|
||||||
|
group_dim=0, symmetric=False),
|
||||||
|
compress_cache=False,
|
||||||
|
comp_cache_config=CompressionConfig(
|
||||||
|
num_bits=4, group_size=64,
|
||||||
|
group_dim=2, symmetric=False))
|
||||||
|
|
||||||
|
opt_config = get_opt_config(f"facebook/{shared.model_name}")
|
||||||
|
model = OptLM(opt_config, env, "models", policy)
|
||||||
|
model.init_all_weights()
|
||||||
|
|
||||||
|
# DeepSpeed ZeRO-3
|
||||||
|
elif shared.args.deepspeed:
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
|
||||||
|
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
|
||||||
|
model.module.eval() # Inference
|
||||||
|
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
|
||||||
|
|
||||||
|
# Custom
|
||||||
|
else:
|
||||||
|
command = "AutoModelForCausalLM.from_pretrained"
|
||||||
|
params = ["low_cpu_mem_usage=True"]
|
||||||
|
if not shared.args.cpu and not torch.cuda.is_available():
|
||||||
|
print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
|
||||||
|
shared.args.cpu = True
|
||||||
|
|
||||||
|
if shared.args.cpu:
|
||||||
|
params.append("low_cpu_mem_usage=True")
|
||||||
|
params.append("torch_dtype=torch.float32")
|
||||||
|
else:
|
||||||
|
params.append("device_map='auto'")
|
||||||
|
params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
|
||||||
|
|
||||||
|
if shared.args.gpu_memory:
|
||||||
|
params.append(f"max_memory={{0: '{shared.args.gpu_memory or '99'}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
|
||||||
|
elif not shared.args.load_in_8bit:
|
||||||
|
total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
|
||||||
|
suggestion = round((total_mem-1000)/1000)*1000
|
||||||
|
if total_mem-suggestion < 800:
|
||||||
|
suggestion -= 1000
|
||||||
|
suggestion = int(round(suggestion/1000))
|
||||||
|
print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
|
||||||
|
params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
|
||||||
|
if shared.args.disk:
|
||||||
|
params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
|
||||||
|
|
||||||
|
command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
|
||||||
|
model = eval(command)
|
||||||
|
|
||||||
|
# Loading the tokenizer
|
||||||
|
if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path(f"models/gpt-j-6B/").exists():
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
|
||||||
|
else:
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
|
||||||
|
tokenizer.truncation_side = 'left'
|
||||||
|
|
||||||
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||||
|
return model, tokenizer
|
||||||
|
|
||||||
|
def load_soft_prompt(name):
|
||||||
|
if name == 'None':
|
||||||
|
shared.soft_prompt = False
|
||||||
|
shared.soft_prompt_tensor = None
|
||||||
|
else:
|
||||||
|
with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
|
||||||
|
zf.extract('tensor.npy')
|
||||||
|
zf.extract('meta.json')
|
||||||
|
j = json.loads(open('meta.json', 'r').read())
|
||||||
|
print(f"\nLoading the softprompt \"{name}\".")
|
||||||
|
for field in j:
|
||||||
|
if field != 'name':
|
||||||
|
if type(j[field]) is list:
|
||||||
|
print(f"{field}: {', '.join(j[field])}")
|
||||||
|
else:
|
||||||
|
print(f"{field}: {j[field]}")
|
||||||
|
print()
|
||||||
|
tensor = np.load('tensor.npy')
|
||||||
|
Path('tensor.npy').unlink()
|
||||||
|
Path('meta.json').unlink()
|
||||||
|
tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
|
||||||
|
tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
|
||||||
|
|
||||||
|
shared.soft_prompt = True
|
||||||
|
shared.soft_prompt_tensor = tensor
|
||||||
|
|
||||||
|
return name
|
@ -6,6 +6,7 @@ model_name = ""
|
|||||||
soft_prompt_tensor = None
|
soft_prompt_tensor = None
|
||||||
soft_prompt = False
|
soft_prompt = False
|
||||||
stop_everything = False
|
stop_everything = False
|
||||||
|
settings = {}
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
|
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
|
||||||
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
|
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
|
||||||
|
@ -1,15 +1,17 @@
|
|||||||
|
import re
|
||||||
import time
|
import time
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import transformers
|
import transformers
|
||||||
from modules.extensions import apply_extensions
|
from modules.extensions import apply_extensions
|
||||||
from modules.html_generator import generate_4chan_html
|
from modules.html_generator import generate_4chan_html
|
||||||
from modules.html_generator import generate_basic_html
|
from modules.html_generator import generate_basic_html
|
||||||
|
from modules.models import local_rank
|
||||||
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
|
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
def get_max_prompt_length(tokens):
|
def get_max_prompt_length(tokens):
|
||||||
max_length = 2048-tokens
|
max_length = 2048-tokens
|
||||||
if shared.soft_prompt:
|
if shared.soft_prompt:
|
||||||
|
198
server.py
198
server.py
@ -1,7 +1,6 @@
|
|||||||
import gc
|
import gc
|
||||||
import io
|
import io
|
||||||
import json
|
import json
|
||||||
import os
|
|
||||||
import re
|
import re
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
@ -9,13 +8,8 @@ import zipfile
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import numpy as np
|
|
||||||
import torch
|
import torch
|
||||||
import transformers
|
import transformers
|
||||||
from PIL import Image
|
|
||||||
from transformers import AutoConfig
|
|
||||||
from transformers import AutoModelForCausalLM
|
|
||||||
from transformers import AutoTokenizer
|
|
||||||
|
|
||||||
import modules.chat as chat
|
import modules.chat as chat
|
||||||
import modules.extensions as extensions_module
|
import modules.extensions as extensions_module
|
||||||
@ -25,6 +19,8 @@ from modules.extensions import extension_state
|
|||||||
from modules.extensions import load_extensions
|
from modules.extensions import load_extensions
|
||||||
from modules.extensions import update_extensions_parameters
|
from modules.extensions import update_extensions_parameters
|
||||||
from modules.html_generator import generate_chat_html
|
from modules.html_generator import generate_chat_html
|
||||||
|
from modules.models import load_model
|
||||||
|
from modules.models import load_soft_prompt
|
||||||
from modules.text_generation import generate_reply
|
from modules.text_generation import generate_reply
|
||||||
|
|
||||||
transformers.logging.set_verbosity_error()
|
transformers.logging.set_verbosity_error()
|
||||||
@ -32,7 +28,7 @@ transformers.logging.set_verbosity_error()
|
|||||||
if (shared.args.chat or shared.args.cai_chat) and not shared.args.no_stream:
|
if (shared.args.chat or shared.args.cai_chat) and not shared.args.no_stream:
|
||||||
print("Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n")
|
print("Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n")
|
||||||
|
|
||||||
settings = {
|
shared.settings = {
|
||||||
'max_new_tokens': 200,
|
'max_new_tokens': 200,
|
||||||
'max_new_tokens_min': 1,
|
'max_new_tokens_min': 1,
|
||||||
'max_new_tokens_max': 2000,
|
'max_new_tokens_max': 2000,
|
||||||
@ -56,154 +52,12 @@ settings = {
|
|||||||
if shared.args.settings is not None and Path(shared.args.settings).exists():
|
if shared.args.settings is not None and Path(shared.args.settings).exists():
|
||||||
new_settings = json.loads(open(Path(shared.args.settings), 'r').read())
|
new_settings = json.loads(open(Path(shared.args.settings), 'r').read())
|
||||||
for item in new_settings:
|
for item in new_settings:
|
||||||
settings[item] = new_settings[item]
|
shared.settings[item] = new_settings[item]
|
||||||
|
|
||||||
if shared.args.flexgen:
|
|
||||||
from flexgen.flex_opt import (Policy, OptLM, TorchDevice, TorchDisk, TorchMixedDevice, CompressionConfig, Env, Task, get_opt_config)
|
|
||||||
|
|
||||||
if shared.args.deepspeed:
|
|
||||||
import deepspeed
|
|
||||||
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_zero3_enabled
|
|
||||||
from modules.deepspeed_parameters import generate_ds_config
|
|
||||||
|
|
||||||
# Distributed setup
|
|
||||||
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
|
|
||||||
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
||||||
torch.cuda.set_device(local_rank)
|
|
||||||
deepspeed.init_distributed()
|
|
||||||
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
|
|
||||||
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
|
||||||
|
|
||||||
def load_model(model_name):
|
|
||||||
print(f"Loading {model_name}...")
|
|
||||||
t0 = time.time()
|
|
||||||
|
|
||||||
# Default settings
|
|
||||||
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen):
|
|
||||||
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
|
||||||
else:
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
|
|
||||||
|
|
||||||
# FlexGen
|
|
||||||
elif shared.args.flexgen:
|
|
||||||
gpu = TorchDevice("cuda:0")
|
|
||||||
cpu = TorchDevice("cpu")
|
|
||||||
disk = TorchDisk(shared.args.disk_cache_dir)
|
|
||||||
env = Env(gpu=gpu, cpu=cpu, disk=disk, mixed=TorchMixedDevice([gpu, cpu, disk]))
|
|
||||||
|
|
||||||
# Offloading policy
|
|
||||||
policy = Policy(1, 1,
|
|
||||||
shared.args.percent[0], shared.args.percent[1],
|
|
||||||
shared.args.percent[2], shared.args.percent[3],
|
|
||||||
shared.args.percent[4], shared.args.percent[5],
|
|
||||||
overlap=True, sep_layer=True, pin_weight=True,
|
|
||||||
cpu_cache_compute=False, attn_sparsity=1.0,
|
|
||||||
compress_weight=shared.args.compress_weight,
|
|
||||||
comp_weight_config=CompressionConfig(
|
|
||||||
num_bits=4, group_size=64,
|
|
||||||
group_dim=0, symmetric=False),
|
|
||||||
compress_cache=False,
|
|
||||||
comp_cache_config=CompressionConfig(
|
|
||||||
num_bits=4, group_size=64,
|
|
||||||
group_dim=2, symmetric=False))
|
|
||||||
|
|
||||||
opt_config = get_opt_config(f"facebook/{shared.model_name}")
|
|
||||||
model = OptLM(opt_config, env, "models", policy)
|
|
||||||
model.init_all_weights()
|
|
||||||
|
|
||||||
# DeepSpeed ZeRO-3
|
|
||||||
elif shared.args.deepspeed:
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
|
|
||||||
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
|
|
||||||
model.module.eval() # Inference
|
|
||||||
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
|
|
||||||
|
|
||||||
# Custom
|
|
||||||
else:
|
|
||||||
command = "AutoModelForCausalLM.from_pretrained"
|
|
||||||
params = ["low_cpu_mem_usage=True"]
|
|
||||||
if not shared.args.cpu and not torch.cuda.is_available():
|
|
||||||
print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
|
|
||||||
shared.args.cpu = True
|
|
||||||
|
|
||||||
if shared.args.cpu:
|
|
||||||
params.append("low_cpu_mem_usage=True")
|
|
||||||
params.append("torch_dtype=torch.float32")
|
|
||||||
else:
|
|
||||||
params.append("device_map='auto'")
|
|
||||||
params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
|
|
||||||
|
|
||||||
if shared.args.gpu_memory:
|
|
||||||
params.append(f"max_memory={{0: '{shared.args.gpu_memory or '99'}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
|
|
||||||
elif not shared.args.load_in_8bit:
|
|
||||||
total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
|
|
||||||
suggestion = round((total_mem-1000)/1000)*1000
|
|
||||||
if total_mem-suggestion < 800:
|
|
||||||
suggestion -= 1000
|
|
||||||
suggestion = int(round(suggestion/1000))
|
|
||||||
print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
|
|
||||||
params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
|
|
||||||
if shared.args.disk:
|
|
||||||
params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
|
|
||||||
|
|
||||||
command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
|
|
||||||
model = eval(command)
|
|
||||||
|
|
||||||
# Loading the tokenizer
|
|
||||||
if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path(f"models/gpt-j-6B/").exists():
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
|
|
||||||
else:
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
|
|
||||||
tokenizer.truncation_side = 'left'
|
|
||||||
|
|
||||||
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
|
||||||
return model, tokenizer
|
|
||||||
|
|
||||||
def load_soft_prompt(name):
|
|
||||||
if name == 'None':
|
|
||||||
shared.soft_prompt = False
|
|
||||||
shared.soft_prompt_tensor = None
|
|
||||||
else:
|
|
||||||
with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
|
|
||||||
zf.extract('tensor.npy')
|
|
||||||
zf.extract('meta.json')
|
|
||||||
j = json.loads(open('meta.json', 'r').read())
|
|
||||||
print(f"\nLoading the softprompt \"{name}\".")
|
|
||||||
for field in j:
|
|
||||||
if field != 'name':
|
|
||||||
if type(j[field]) is list:
|
|
||||||
print(f"{field}: {', '.join(j[field])}")
|
|
||||||
else:
|
|
||||||
print(f"{field}: {j[field]}")
|
|
||||||
print()
|
|
||||||
tensor = np.load('tensor.npy')
|
|
||||||
Path('tensor.npy').unlink()
|
|
||||||
Path('meta.json').unlink()
|
|
||||||
tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
|
|
||||||
tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
|
|
||||||
|
|
||||||
shared.soft_prompt = True
|
|
||||||
shared.soft_prompt_tensor = tensor
|
|
||||||
|
|
||||||
return name
|
|
||||||
|
|
||||||
def upload_soft_prompt(file):
|
|
||||||
with zipfile.ZipFile(io.BytesIO(file)) as zf:
|
|
||||||
zf.extract('meta.json')
|
|
||||||
j = json.loads(open('meta.json', 'r').read())
|
|
||||||
name = j['name']
|
|
||||||
Path('meta.json').unlink()
|
|
||||||
|
|
||||||
with open(Path(f'softprompts/{name}.zip'), 'wb') as f:
|
|
||||||
f.write(file)
|
|
||||||
|
|
||||||
return name
|
|
||||||
|
|
||||||
def load_model_wrapper(selected_model):
|
def load_model_wrapper(selected_model):
|
||||||
if selected_model != shared.model_name:
|
if selected_model != shared.model_name:
|
||||||
shared.model_name = selected_model
|
shared.model_name = selected_model
|
||||||
model = shared.tokenizer = None
|
shared.model = shared.tokenizer = None
|
||||||
if not shared.args.cpu:
|
if not shared.args.cpu:
|
||||||
gc.collect()
|
gc.collect()
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
@ -240,6 +94,18 @@ def load_preset_values(preset_menu, return_dict=False):
|
|||||||
else:
|
else:
|
||||||
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
|
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
|
||||||
|
|
||||||
|
def upload_soft_prompt(file):
|
||||||
|
with zipfile.ZipFile(io.BytesIO(file)) as zf:
|
||||||
|
zf.extract('meta.json')
|
||||||
|
j = json.loads(open('meta.json', 'r').read())
|
||||||
|
name = j['name']
|
||||||
|
Path('meta.json').unlink()
|
||||||
|
|
||||||
|
with open(Path(f'softprompts/{name}.zip'), 'wb') as f:
|
||||||
|
f.write(file)
|
||||||
|
|
||||||
|
return name
|
||||||
|
|
||||||
def get_available_models():
|
def get_available_models():
|
||||||
return sorted([item.name for item in list(Path('models/').glob('*')) if not item.name.endswith(('.txt', '-np'))], key=str.lower)
|
return sorted([item.name for item in list(Path('models/').glob('*')) if not item.name.endswith(('.txt', '-np'))], key=str.lower)
|
||||||
|
|
||||||
@ -265,7 +131,7 @@ def create_extensions_block():
|
|||||||
params = extensions_module.get_params(ext)
|
params = extensions_module.get_params(ext)
|
||||||
for param in params:
|
for param in params:
|
||||||
_id = f"{ext}-{param}"
|
_id = f"{ext}-{param}"
|
||||||
default_value = settings[_id] if _id in settings else params[param]
|
default_value = shared.settings[_id] if _id in shared.settings else params[param]
|
||||||
default_values.append(default_value)
|
default_values.append(default_value)
|
||||||
if type(params[param]) == str:
|
if type(params[param]) == str:
|
||||||
extensions_ui_elements.append(gr.Textbox(value=default_value, label=f"{ext}-{param}"))
|
extensions_ui_elements.append(gr.Textbox(value=default_value, label=f"{ext}-{param}"))
|
||||||
@ -279,7 +145,7 @@ def create_extensions_block():
|
|||||||
btn_extensions.click(update_extensions_parameters, [*extensions_ui_elements], [])
|
btn_extensions.click(update_extensions_parameters, [*extensions_ui_elements], [])
|
||||||
|
|
||||||
def create_settings_menus():
|
def create_settings_menus():
|
||||||
generate_params = load_preset_values(settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', return_dict=True)
|
generate_params = load_preset_values(shared.settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', return_dict=True)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
@ -288,7 +154,7 @@ def create_settings_menus():
|
|||||||
ui.create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
|
ui.create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
preset_menu = gr.Dropdown(choices=available_presets, value=settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
|
preset_menu = gr.Dropdown(choices=available_presets, value=shared.settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
|
||||||
ui.create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
|
ui.create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
|
||||||
|
|
||||||
with gr.Accordion("Custom generation parameters", open=False, elem_id="accordion"):
|
with gr.Accordion("Custom generation parameters", open=False, elem_id="accordion"):
|
||||||
@ -360,11 +226,11 @@ shared.model, shared.tokenizer = load_model(shared.model_name)
|
|||||||
|
|
||||||
# UI settings
|
# UI settings
|
||||||
if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
|
if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
|
||||||
default_text = settings['prompt_gpt4chan']
|
default_text = shared.settings['prompt_gpt4chan']
|
||||||
elif re.match('(rosey|chip|joi)_.*_instruct.*', shared.model_name.lower()) is not None:
|
elif re.match('(rosey|chip|joi)_.*_instruct.*', shared.model_name.lower()) is not None:
|
||||||
default_text = 'User: \n'
|
default_text = 'User: \n'
|
||||||
else:
|
else:
|
||||||
default_text = settings['prompt']
|
default_text = shared.settings['prompt']
|
||||||
description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
|
description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
|
||||||
|
|
||||||
suffix = '_pygmalion' if 'pygmalion' in shared.model_name.lower() else ''
|
suffix = '_pygmalion' if 'pygmalion' in shared.model_name.lower() else ''
|
||||||
@ -374,11 +240,11 @@ gen_events = []
|
|||||||
if shared.args.chat or shared.args.cai_chat:
|
if shared.args.chat or shared.args.cai_chat:
|
||||||
|
|
||||||
if Path(f'logs/persistent.json').exists():
|
if Path(f'logs/persistent.json').exists():
|
||||||
chat.load_history(open(Path(f'logs/persistent.json'), 'rb').read(), settings[f'name1{suffix}'], settings[f'name2{suffix}'])
|
chat.load_history(open(Path(f'logs/persistent.json'), 'rb').read(), shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}'])
|
||||||
|
|
||||||
with gr.Blocks(css=ui.css+ui.chat_css, analytics_enabled=False) as interface:
|
with gr.Blocks(css=ui.css+ui.chat_css, analytics_enabled=False) as interface:
|
||||||
if shared.args.cai_chat:
|
if shared.args.cai_chat:
|
||||||
display = gr.HTML(value=generate_chat_html(chat.history['visible'], settings[f'name1{suffix}'], settings[f'name2{suffix}'], chat.character))
|
display = gr.HTML(value=generate_chat_html(chat.history['visible'], shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}'], chat.character))
|
||||||
else:
|
else:
|
||||||
display = gr.Chatbot(value=chat.history['visible'])
|
display = gr.Chatbot(value=chat.history['visible'])
|
||||||
textbox = gr.Textbox(label='Input')
|
textbox = gr.Textbox(label='Input')
|
||||||
@ -398,15 +264,15 @@ if shared.args.chat or shared.args.cai_chat:
|
|||||||
picture_select = gr.Image(label="Send a picture", type='pil')
|
picture_select = gr.Image(label="Send a picture", type='pil')
|
||||||
|
|
||||||
with gr.Tab("Chat settings"):
|
with gr.Tab("Chat settings"):
|
||||||
name1 = gr.Textbox(value=settings[f'name1{suffix}'], lines=1, label='Your name')
|
name1 = gr.Textbox(value=shared.settings[f'name1{suffix}'], lines=1, label='Your name')
|
||||||
name2 = gr.Textbox(value=settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
|
name2 = gr.Textbox(value=shared.settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
|
||||||
context = gr.Textbox(value=settings[f'context{suffix}'], lines=2, label='Context')
|
context = gr.Textbox(value=shared.settings[f'context{suffix}'], lines=2, label='Context')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
character_menu = gr.Dropdown(choices=available_characters, value="None", label='Character')
|
character_menu = gr.Dropdown(choices=available_characters, value="None", label='Character')
|
||||||
ui.create_refresh_button(character_menu, lambda : None, lambda : {"choices": get_available_characters()}, "refresh-button")
|
ui.create_refresh_button(character_menu, lambda : None, lambda : {"choices": get_available_characters()}, "refresh-button")
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
check = gr.Checkbox(value=settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
|
check = gr.Checkbox(value=shared.settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Tab('Chat history'):
|
with gr.Tab('Chat history'):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
@ -434,9 +300,9 @@ if shared.args.chat or shared.args.cai_chat:
|
|||||||
with gr.Tab("Generation settings"):
|
with gr.Tab("Generation settings"):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
max_new_tokens = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
chat_prompt_size_slider = gr.Slider(minimum=settings['chat_prompt_size_min'], maximum=settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=settings['chat_prompt_size'])
|
chat_prompt_size_slider = gr.Slider(minimum=shared.settings['chat_prompt_size_min'], maximum=shared.settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=shared.settings['chat_prompt_size'])
|
||||||
|
|
||||||
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
|
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
|
||||||
|
|
||||||
@ -498,7 +364,7 @@ elif shared.args.notebook:
|
|||||||
buttons["Generate"] = gr.Button("Generate")
|
buttons["Generate"] = gr.Button("Generate")
|
||||||
buttons["Stop"] = gr.Button("Stop")
|
buttons["Stop"] = gr.Button("Stop")
|
||||||
|
|
||||||
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
max_new_tokens = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
|
||||||
|
|
||||||
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
|
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
|
||||||
|
|
||||||
@ -515,7 +381,7 @@ else:
|
|||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
|
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
|
||||||
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
max_new_tokens = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
|
||||||
buttons["Generate"] = gr.Button("Generate")
|
buttons["Generate"] = gr.Button("Generate")
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
|
Loading…
Reference in New Issue
Block a user