|
|
|
@ -150,6 +150,40 @@ def load_model(model_name):
|
|
|
|
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
|
|
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
def load_model_wrapper(selected_model):
|
|
|
|
|
global model_name, model, tokenizer
|
|
|
|
|
|
|
|
|
|
if selected_model != model_name:
|
|
|
|
|
model_name = selected_model
|
|
|
|
|
model = tokenizer = None
|
|
|
|
|
if not args.cpu:
|
|
|
|
|
gc.collect()
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
model, tokenizer = load_model(model_name)
|
|
|
|
|
|
|
|
|
|
def load_preset_values(preset_menu, return_dict=False):
|
|
|
|
|
settings = {
|
|
|
|
|
'do_sample': True,
|
|
|
|
|
'temperature': 1,
|
|
|
|
|
'top_p': 1,
|
|
|
|
|
'typical_p': 1,
|
|
|
|
|
'repetition_penalty': 1,
|
|
|
|
|
'top_k': 50,
|
|
|
|
|
}
|
|
|
|
|
with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile:
|
|
|
|
|
preset = infile.read()
|
|
|
|
|
for i in preset.split(','):
|
|
|
|
|
i = i.strip().split('=')
|
|
|
|
|
if len(i) == 2 and i[0].strip() != 'tokens':
|
|
|
|
|
settings[i[0].strip()] = eval(i[1].strip())
|
|
|
|
|
|
|
|
|
|
settings['temperature'] = min(1.99, settings['temperature'])
|
|
|
|
|
|
|
|
|
|
if return_dict:
|
|
|
|
|
return settings
|
|
|
|
|
else:
|
|
|
|
|
return settings['do_sample'], settings['temperature'], settings['top_p'], settings['typical_p'], settings['repetition_penalty'], settings['top_k']
|
|
|
|
|
|
|
|
|
|
# Removes empty replies from gpt4chan outputs
|
|
|
|
|
def fix_gpt4chan(s):
|
|
|
|
|
for i in range(10):
|
|
|
|
@ -194,8 +228,8 @@ def formatted_outputs(reply, model_name):
|
|
|
|
|
else:
|
|
|
|
|
return reply
|
|
|
|
|
|
|
|
|
|
def generate_reply(question, tokens, inference_settings, selected_model, eos_token=None, stopping_string=None):
|
|
|
|
|
global model, tokenizer, model_name, loaded_preset, preset
|
|
|
|
|
def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, eos_token=None, stopping_string=None):
|
|
|
|
|
global model_name, model, tokenizer
|
|
|
|
|
|
|
|
|
|
original_question = question
|
|
|
|
|
if not (args.chat or args.cai_chat):
|
|
|
|
@ -203,18 +237,6 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
|
|
if args.verbose:
|
|
|
|
|
print(f"\n\n{question}\n--------------------\n")
|
|
|
|
|
|
|
|
|
|
if selected_model != model_name:
|
|
|
|
|
model_name = selected_model
|
|
|
|
|
model = tokenizer = None
|
|
|
|
|
if not args.cpu:
|
|
|
|
|
gc.collect()
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
model, tokenizer = load_model(model_name)
|
|
|
|
|
if inference_settings != loaded_preset:
|
|
|
|
|
with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
|
|
|
|
|
preset = infile.read()
|
|
|
|
|
loaded_preset = inference_settings
|
|
|
|
|
|
|
|
|
|
input_ids = encode(question, tokens)
|
|
|
|
|
cuda = "" if (args.cpu or args.deepspeed) else ".cuda()"
|
|
|
|
|
n = tokenizer.eos_token_id if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
|
|
|
|
@ -231,15 +253,29 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
|
|
else:
|
|
|
|
|
stopping_criteria_list = None
|
|
|
|
|
|
|
|
|
|
generate_params = [f"eos_token_id={n}", "stopping_criteria=stopping_criteria_list"]
|
|
|
|
|
generate_params = [
|
|
|
|
|
f"eos_token_id={n}",
|
|
|
|
|
f"stopping_criteria=stopping_criteria_list",
|
|
|
|
|
f"do_sample={do_sample}",
|
|
|
|
|
f"temperature={temperature}",
|
|
|
|
|
f"top_p={top_p}",
|
|
|
|
|
f"typical_p={typical_p}",
|
|
|
|
|
f"repetition_penalty={repetition_penalty}",
|
|
|
|
|
f"top_k={top_k}",
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
if args.deepspeed:
|
|
|
|
|
generate_params.append("synced_gpus=True")
|
|
|
|
|
if args.no_stream:
|
|
|
|
|
generate_params.append(f"max_new_tokens=tokens")
|
|
|
|
|
else:
|
|
|
|
|
generate_params.append(f"max_new_tokens=8")
|
|
|
|
|
|
|
|
|
|
# Generate the entire reply at once
|
|
|
|
|
if args.no_stream:
|
|
|
|
|
t0 = time.time()
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
output = eval(f"model.generate(input_ids, {','.join(generate_params)}, {preset}){cuda}")
|
|
|
|
|
output = eval(f"model.generate(input_ids, {','.join(generate_params)}){cuda}")
|
|
|
|
|
reply = decode(output[0])
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output[0])-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output[0])-len(input_ids[0])} tokens)")
|
|
|
|
@ -250,10 +286,9 @@ def generate_reply(question, tokens, inference_settings, selected_model, eos_tok
|
|
|
|
|
# Generate the reply 1 token at a time
|
|
|
|
|
else:
|
|
|
|
|
yield formatted_outputs(original_question, model_name)
|
|
|
|
|
preset = preset.replace('max_new_tokens=tokens', 'max_new_tokens=8')
|
|
|
|
|
for i in tqdm(range(tokens//8+1)):
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
output = eval(f"model.generate(input_ids, {','.join(generate_params)}, {preset}){cuda}")
|
|
|
|
|
output = eval(f"model.generate(input_ids, {','.join(generate_params)}){cuda}")
|
|
|
|
|
reply = decode(output[0])
|
|
|
|
|
if not (args.chat or args.cai_chat):
|
|
|
|
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|
|
|
|
@ -285,6 +320,18 @@ def update_extensions_parameters(*kwargs):
|
|
|
|
|
params[param] = eval(f"kwargs[{i}]")
|
|
|
|
|
i += 1
|
|
|
|
|
|
|
|
|
|
def get_available_models():
|
|
|
|
|
return sorted(set([item.replace('.pt', '') for item in map(lambda x : str(x.name), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*'))) if not item.endswith('.txt')]), key=str.lower)
|
|
|
|
|
|
|
|
|
|
def get_available_presets():
|
|
|
|
|
return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
|
|
|
|
|
|
|
|
|
|
def get_available_characters():
|
|
|
|
|
return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
|
|
|
|
|
|
|
|
|
|
def get_available_extensions():
|
|
|
|
|
return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
|
|
|
|
|
|
|
|
|
|
def create_extensions_block():
|
|
|
|
|
extensions_ui_elements = []
|
|
|
|
|
default_values = []
|
|
|
|
@ -307,62 +354,33 @@ def create_extensions_block():
|
|
|
|
|
btn_extensions = gr.Button("Apply")
|
|
|
|
|
btn_extensions.click(update_extensions_parameters, [*extensions_ui_elements], [])
|
|
|
|
|
|
|
|
|
|
def get_available_models():
|
|
|
|
|
return sorted(set([item.replace('.pt', '') for item in map(lambda x : str(x.name), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*'))) if not item.endswith('.txt')]), key=str.lower)
|
|
|
|
|
def create_settings_menus():
|
|
|
|
|
defaults = load_preset_values(settings[f'preset{suffix}'], return_dict=True)
|
|
|
|
|
|
|
|
|
|
def get_available_presets():
|
|
|
|
|
return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
with gr.Row():
|
|
|
|
|
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
|
|
|
|
create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
|
|
|
|
|
with gr.Column():
|
|
|
|
|
with gr.Row():
|
|
|
|
|
preset_menu = gr.Dropdown(choices=available_presets, value=settings[f'preset{suffix}'], label='Generation parameters preset')
|
|
|
|
|
create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
|
|
|
|
|
|
|
|
|
|
def get_available_characters():
|
|
|
|
|
return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
|
|
|
|
|
with gr.Accordion("Custom generation parameters", open=False):
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
do_sample = gr.Checkbox(value=defaults['do_sample'], label="do_sample")
|
|
|
|
|
temperature = gr.Slider(0.01, 1.99, value=defaults['temperature'], step=0.01, label="temperature")
|
|
|
|
|
top_p = gr.Slider(0.0,1.0,value=defaults['top_p'],step=0.01,label="top_p")
|
|
|
|
|
with gr.Column():
|
|
|
|
|
typical_p = gr.Slider(0.0,1.0,value=defaults['typical_p'],step=0.01,label="typical_p")
|
|
|
|
|
repetition_penalty = gr.Slider(1.0,5.0,value=defaults['repetition_penalty'],step=0.01,label="repetition_penalty")
|
|
|
|
|
top_k = gr.Slider(0,200,value=defaults['top_k'],step=1,label="top_k")
|
|
|
|
|
|
|
|
|
|
def get_available_extensions():
|
|
|
|
|
return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
|
|
|
|
|
|
|
|
|
|
available_models = get_available_models()
|
|
|
|
|
available_presets = get_available_presets()
|
|
|
|
|
available_characters = get_available_characters()
|
|
|
|
|
available_extensions = get_available_extensions()
|
|
|
|
|
extension_state = {}
|
|
|
|
|
if args.extensions is not None:
|
|
|
|
|
for i,ext in enumerate(args.extensions.split(',')):
|
|
|
|
|
if ext in available_extensions:
|
|
|
|
|
print(f'Loading the extension "{ext}"... ', end='')
|
|
|
|
|
ext_string = f"extensions.{ext}.script"
|
|
|
|
|
exec(f"import {ext_string}")
|
|
|
|
|
extension_state[ext] = [True, i]
|
|
|
|
|
print(f'Ok.')
|
|
|
|
|
|
|
|
|
|
# Choosing the default model
|
|
|
|
|
if args.model is not None:
|
|
|
|
|
model_name = args.model
|
|
|
|
|
else:
|
|
|
|
|
if len(available_models) == 0:
|
|
|
|
|
print("No models are available! Please download at least one.")
|
|
|
|
|
sys.exit(0)
|
|
|
|
|
elif len(available_models) == 1:
|
|
|
|
|
i = 0
|
|
|
|
|
else:
|
|
|
|
|
print("The following models are available:\n")
|
|
|
|
|
for i,model in enumerate(available_models):
|
|
|
|
|
print(f"{i+1}. {model}")
|
|
|
|
|
print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
|
|
|
|
|
i = int(input())-1
|
|
|
|
|
print()
|
|
|
|
|
model_name = available_models[i]
|
|
|
|
|
model, tokenizer = load_model(model_name)
|
|
|
|
|
loaded_preset = None
|
|
|
|
|
|
|
|
|
|
# UI settings
|
|
|
|
|
default_text = settings['prompt_gpt4chan'] if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) else settings['prompt']
|
|
|
|
|
description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
|
|
|
|
|
css = ".my-4 {margin-top: 0} .py-6 {padding-top: 2.5rem} #refresh-button {flex: none; margin: 0; padding: 0; min-width: 50px; border: none; box-shadow: none; border-radius: 0} #download-label, #upload-label {min-height: 0}"
|
|
|
|
|
buttons = {}
|
|
|
|
|
gen_events = []
|
|
|
|
|
|
|
|
|
|
if args.chat or args.cai_chat:
|
|
|
|
|
history = {'internal': [], 'visible': []}
|
|
|
|
|
character = None
|
|
|
|
|
model_menu.change(load_model_wrapper, [model_menu], [])
|
|
|
|
|
preset_menu.change(load_preset_values, [preset_menu], [do_sample, temperature, top_p, typical_p, repetition_penalty, top_k])
|
|
|
|
|
return preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k
|
|
|
|
|
|
|
|
|
|
# This gets the new line characters right.
|
|
|
|
|
def clean_chat_message(text):
|
|
|
|
@ -433,14 +451,14 @@ if args.chat or args.cai_chat:
|
|
|
|
|
|
|
|
|
|
return reply, next_character_found, substring_found
|
|
|
|
|
|
|
|
|
|
def chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
|
|
|
|
|
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, name1, name2, context, check, history_size):
|
|
|
|
|
original_text = text
|
|
|
|
|
text = apply_extensions(text, "input")
|
|
|
|
|
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
|
|
|
|
|
history['internal'].append(['', ''])
|
|
|
|
|
history['visible'].append(['', ''])
|
|
|
|
|
eos_token = '\n' if check else None
|
|
|
|
|
for reply in generate_reply(question, tokens, inference_settings, selected_model, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
|
|
|
|
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
|
|
|
|
reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name2, name1, check, extensions=True)
|
|
|
|
|
history['internal'][-1] = [text, reply]
|
|
|
|
|
history['visible'][-1] = [original_text, apply_extensions(reply, "output")]
|
|
|
|
@ -450,10 +468,10 @@ if args.chat or args.cai_chat:
|
|
|
|
|
break
|
|
|
|
|
yield history['visible']
|
|
|
|
|
|
|
|
|
|
def impersonate_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
|
|
|
|
|
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, name1, name2, context, check, history_size):
|
|
|
|
|
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
|
|
|
|
|
eos_token = '\n' if check else None
|
|
|
|
|
for reply in generate_reply(question, tokens, inference_settings, selected_model, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
|
|
|
|
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
|
|
|
|
reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name1, name2, check, extensions=False)
|
|
|
|
|
if not substring_found:
|
|
|
|
|
yield apply_extensions(reply, "output")
|
|
|
|
@ -461,19 +479,19 @@ if args.chat or args.cai_chat:
|
|
|
|
|
break
|
|
|
|
|
yield apply_extensions(reply, "output")
|
|
|
|
|
|
|
|
|
|
def cai_chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
|
|
|
|
|
for _history in chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
|
|
|
|
|
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, name1, name2, context, check, history_size):
|
|
|
|
|
for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, name1, name2, context, check, history_size):
|
|
|
|
|
yield generate_chat_html(_history, name1, name2, character)
|
|
|
|
|
|
|
|
|
|
def regenerate_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
|
|
|
|
|
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, name1, name2, context, check, history_size):
|
|
|
|
|
last = history['visible'].pop()
|
|
|
|
|
history['internal'].pop()
|
|
|
|
|
text = last[0]
|
|
|
|
|
if args.cai_chat:
|
|
|
|
|
for i in cai_chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
|
|
|
|
|
for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, name1, name2, context, check, history_size):
|
|
|
|
|
yield i
|
|
|
|
|
else:
|
|
|
|
|
for i in chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
|
|
|
|
|
for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, name1, name2, context, check, history_size):
|
|
|
|
|
yield i
|
|
|
|
|
|
|
|
|
|
def remove_last_message(name1, name2):
|
|
|
|
@ -660,7 +678,53 @@ if args.chat or args.cai_chat:
|
|
|
|
|
img.save(Path(f'img_me.png'))
|
|
|
|
|
print(f'Profile picture saved to "img_me.png"')
|
|
|
|
|
|
|
|
|
|
# Global variables
|
|
|
|
|
available_models = get_available_models()
|
|
|
|
|
available_presets = get_available_presets()
|
|
|
|
|
available_characters = get_available_characters()
|
|
|
|
|
available_extensions = get_available_extensions()
|
|
|
|
|
extension_state = {}
|
|
|
|
|
if args.extensions is not None:
|
|
|
|
|
for i,ext in enumerate(args.extensions.split(',')):
|
|
|
|
|
if ext in available_extensions:
|
|
|
|
|
print(f'Loading the extension "{ext}"... ', end='')
|
|
|
|
|
ext_string = f"extensions.{ext}.script"
|
|
|
|
|
exec(f"import {ext_string}")
|
|
|
|
|
extension_state[ext] = [True, i]
|
|
|
|
|
print(f'Ok.')
|
|
|
|
|
|
|
|
|
|
# Choosing the default model
|
|
|
|
|
if args.model is not None:
|
|
|
|
|
model_name = args.model
|
|
|
|
|
else:
|
|
|
|
|
if len(available_models) == 0:
|
|
|
|
|
print("No models are available! Please download at least one.")
|
|
|
|
|
sys.exit(0)
|
|
|
|
|
elif len(available_models) == 1:
|
|
|
|
|
i = 0
|
|
|
|
|
else:
|
|
|
|
|
print("The following models are available:\n")
|
|
|
|
|
for i,model in enumerate(available_models):
|
|
|
|
|
print(f"{i+1}. {model}")
|
|
|
|
|
print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
|
|
|
|
|
i = int(input())-1
|
|
|
|
|
print()
|
|
|
|
|
model_name = available_models[i]
|
|
|
|
|
model, tokenizer = load_model(model_name)
|
|
|
|
|
loaded_preset = None
|
|
|
|
|
|
|
|
|
|
# UI settings
|
|
|
|
|
default_text = settings['prompt_gpt4chan'] if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) else settings['prompt']
|
|
|
|
|
description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
|
|
|
|
|
css = ".my-4 {margin-top: 0} .py-6 {padding-top: 2.5rem} #refresh-button {flex: none; margin: 0; padding: 0; min-width: 50px; border: none; box-shadow: none; border-radius: 0} #download-label, #upload-label {min-height: 0}"
|
|
|
|
|
buttons = {}
|
|
|
|
|
gen_events = []
|
|
|
|
|
|
|
|
|
|
suffix = '_pygmalion' if 'pygmalion' in model_name.lower() else ''
|
|
|
|
|
history = {'internal': [], 'visible': []}
|
|
|
|
|
character = None
|
|
|
|
|
|
|
|
|
|
if args.chat or args.cai_chat:
|
|
|
|
|
with gr.Blocks(css=css+".h-\[40vh\] {height: 66.67vh} .gradio-container {max-width: 800px; margin-left: auto; margin-right: auto} .w-screen {width: unset}", analytics_enabled=False) as interface:
|
|
|
|
|
if args.cai_chat:
|
|
|
|
|
display = gr.HTML(value=generate_chat_html([], "", "", character))
|
|
|
|
@ -681,15 +745,11 @@ if args.chat or args.cai_chat:
|
|
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
|
|
|
with gr.Row():
|
|
|
|
|
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
|
|
|
|
create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
|
|
|
|
|
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
|
|
|
with gr.Column():
|
|
|
|
|
history_size_slider = gr.Slider(minimum=settings['history_size_min'], maximum=settings['history_size_max'], step=1, label='Chat history size in prompt (0 for no limit)', value=settings['history_size'])
|
|
|
|
|
with gr.Row():
|
|
|
|
|
preset_menu = gr.Dropdown(choices=available_presets, value=settings[f'preset{suffix}'], label='Generation parameters preset')
|
|
|
|
|
create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
|
|
|
|
|
|
|
|
|
|
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k = create_settings_menus()
|
|
|
|
|
|
|
|
|
|
name1 = gr.Textbox(value=settings[f'name1{suffix}'], lines=1, label='Your name')
|
|
|
|
|
name2 = gr.Textbox(value=settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
|
|
|
|
@ -727,7 +787,7 @@ if args.chat or args.cai_chat:
|
|
|
|
|
if args.extensions is not None:
|
|
|
|
|
create_extensions_block()
|
|
|
|
|
|
|
|
|
|
input_params = [textbox, length_slider, preset_menu, model_menu, name1, name2, context, check, history_size_slider]
|
|
|
|
|
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, name1, name2, context, check, history_size_slider]
|
|
|
|
|
if args.cai_chat:
|
|
|
|
|
gen_events.append(buttons["Generate"].click(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
|
|
|
|
|
gen_events.append(textbox.submit(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream))
|
|
|
|
@ -768,25 +828,19 @@ elif args.notebook:
|
|
|
|
|
markdown = gr.Markdown()
|
|
|
|
|
with gr.Tab('HTML'):
|
|
|
|
|
html = gr.HTML()
|
|
|
|
|
|
|
|
|
|
buttons["Generate"] = gr.Button("Generate")
|
|
|
|
|
buttons["Stop"] = gr.Button("Stop")
|
|
|
|
|
|
|
|
|
|
length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
with gr.Row():
|
|
|
|
|
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
|
|
|
|
create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
|
|
|
|
|
with gr.Column():
|
|
|
|
|
with gr.Row():
|
|
|
|
|
preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Generation parameters preset')
|
|
|
|
|
create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
|
|
|
|
|
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
|
|
|
|
|
|
|
|
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k = create_settings_menus()
|
|
|
|
|
|
|
|
|
|
if args.extensions is not None:
|
|
|
|
|
create_extensions_block()
|
|
|
|
|
|
|
|
|
|
gen_events.append(buttons["Generate"].click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=args.no_stream, api_name="textgen"))
|
|
|
|
|
gen_events.append(textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=args.no_stream))
|
|
|
|
|
gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k], [textbox, markdown, html], show_progress=args.no_stream, api_name="textgen"))
|
|
|
|
|
gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k], [textbox, markdown, html], show_progress=args.no_stream))
|
|
|
|
|
buttons["Stop"].click(None, None, None, cancels=gen_events)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
@ -795,19 +849,15 @@ else:
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
|
|
|
|
|
length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
|
|
|
with gr.Row():
|
|
|
|
|
preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Generation parameters preset')
|
|
|
|
|
create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
|
|
|
|
|
with gr.Row():
|
|
|
|
|
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
|
|
|
|
create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
|
|
|
|
|
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
|
|
|
buttons["Generate"] = gr.Button("Generate")
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
buttons["Continue"] = gr.Button("Continue")
|
|
|
|
|
with gr.Column():
|
|
|
|
|
buttons["Stop"] = gr.Button("Stop")
|
|
|
|
|
|
|
|
|
|
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k = create_settings_menus()
|
|
|
|
|
if args.extensions is not None:
|
|
|
|
|
create_extensions_block()
|
|
|
|
|
|
|
|
|
@ -819,13 +869,17 @@ else:
|
|
|
|
|
with gr.Tab('HTML'):
|
|
|
|
|
html = gr.HTML()
|
|
|
|
|
|
|
|
|
|
gen_events.append(buttons["Generate"].click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream, api_name="textgen"))
|
|
|
|
|
gen_events.append(textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream))
|
|
|
|
|
gen_events.append(buttons["Continue"].click(generate_reply, [output_textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream))
|
|
|
|
|
gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k], [output_textbox, markdown, html], show_progress=args.no_stream, api_name="textgen"))
|
|
|
|
|
gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k], [output_textbox, markdown, html], show_progress=args.no_stream))
|
|
|
|
|
gen_events.append(buttons["Continue"].click(generate_reply, [output_textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k], [output_textbox, markdown, html], show_progress=args.no_stream))
|
|
|
|
|
buttons["Stop"].click(None, None, None, cancels=gen_events)
|
|
|
|
|
|
|
|
|
|
interface.queue()
|
|
|
|
|
if args.listen:
|
|
|
|
|
interface.launch(share=args.share, server_name="0.0.0.0", server_port=args.listen_port)
|
|
|
|
|
interface.launch(prevent_thread_lock=True, share=args.share, server_name="0.0.0.0", server_port=args.listen_port)
|
|
|
|
|
else:
|
|
|
|
|
interface.launch(share=args.share, server_port=args.listen_port)
|
|
|
|
|
interface.launch(prevent_thread_lock=True, share=args.share, server_port=args.listen_port)
|
|
|
|
|
|
|
|
|
|
# I think that I will need this later
|
|
|
|
|
while True:
|
|
|
|
|
time.sleep(0.5)
|
|
|
|
|