mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-23 10:09:20 +01:00
Remove RWKV loader (#5130)
This commit is contained in:
parent
0e54a09bcb
commit
2734ce3e4c
@ -312,13 +312,6 @@ List of command-line flags
|
||||
| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. |
|
||||
| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. |
|
||||
|
||||
#### RWKV
|
||||
|
||||
| Flag | Description |
|
||||
|---------------------------------|-------------|
|
||||
| `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". |
|
||||
| `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. |
|
||||
|
||||
#### RoPE (for llama.cpp, ExLlamaV2, and transformers)
|
||||
|
||||
| Flag | Description |
|
||||
|
154
modules/RWKV.py
154
modules/RWKV.py
@ -1,154 +0,0 @@
|
||||
'''
|
||||
This loader is not currently maintained as RWKV can now be loaded
|
||||
through the transformers library.
|
||||
'''
|
||||
|
||||
import copy
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from tokenizers import Tokenizer
|
||||
from transformers import is_torch_xpu_available
|
||||
|
||||
import modules.shared as shared
|
||||
from modules.callbacks import Iteratorize
|
||||
|
||||
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
||||
|
||||
os.environ['RWKV_JIT_ON'] = '1'
|
||||
os.environ["RWKV_CUDA_ON"] = '1' if shared.args.rwkv_cuda_on else '0' # use CUDA kernel for seq mode (much faster)
|
||||
|
||||
from rwkv.model import RWKV
|
||||
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
||||
|
||||
|
||||
class RWKVModel:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(self, path, dtype="bf16" if is_torch_xpu_available() else "fp16", device="xpu" if is_torch_xpu_available() else "cuda"):
|
||||
tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
|
||||
if shared.args.rwkv_strategy is None:
|
||||
model = RWKV(model=str(path), strategy=f'{device} {dtype}')
|
||||
else:
|
||||
model = RWKV(model=str(path), strategy=shared.args.rwkv_strategy)
|
||||
|
||||
pipeline = PIPELINE(model, str(tokenizer_path))
|
||||
result = self()
|
||||
result.pipeline = pipeline
|
||||
result.model = model
|
||||
result.cached_context = ""
|
||||
result.cached_model_state = None
|
||||
result.cached_output_logits = None
|
||||
return result
|
||||
|
||||
def generate(self, prompt, state, callback=None):
|
||||
args = PIPELINE_ARGS(
|
||||
temperature=state['temperature'],
|
||||
top_p=state['top_p'],
|
||||
top_k=state['top_k'],
|
||||
alpha_frequency=0.1, # Frequency Penalty (as in GPT-3)
|
||||
alpha_presence=0.1, # Presence Penalty (as in GPT-3)
|
||||
token_ban=[0], # ban the generation of some tokens
|
||||
token_stop=[]
|
||||
)
|
||||
|
||||
if self.cached_context != "":
|
||||
if prompt.startswith(self.cached_context):
|
||||
prompt = prompt[len(self.cached_context):]
|
||||
else:
|
||||
self.cached_context = ""
|
||||
self.cached_model_state = None
|
||||
self.cached_output_logits = None
|
||||
|
||||
# out = self.pipeline.generate(prompt, token_count=state['max_new_tokens'], args=args, callback=callback)
|
||||
out = self.generate_from_cached_state(prompt, token_count=state['max_new_tokens'], args=args, callback=callback)
|
||||
return out
|
||||
|
||||
def generate_with_streaming(self, *args, **kwargs):
|
||||
with Iteratorize(self.generate, args, kwargs, callback=None) as generator:
|
||||
reply = ''
|
||||
for token in generator:
|
||||
reply += token
|
||||
yield reply
|
||||
|
||||
# Similar to the PIPELINE.generate, but lets us maintain the cached_model_state
|
||||
def generate_from_cached_state(self, ctx="", token_count=20, args=None, callback=None):
|
||||
all_tokens = []
|
||||
out_str = ''
|
||||
occurrence = {}
|
||||
state = copy.deepcopy(self.cached_model_state) if self.cached_model_state is not None else None
|
||||
|
||||
# if we ended up with an empty context, just reuse the cached logits
|
||||
# this can happen if a user undoes a message and then sends the exact message again
|
||||
# in that case the full context ends up being the same as the cached_context, so the remaining context is empty.
|
||||
if ctx == "":
|
||||
out = self.cached_output_logits
|
||||
|
||||
token = None
|
||||
for i in range(token_count):
|
||||
# forward
|
||||
tokens = self.pipeline.encode(ctx) if i == 0 else [token]
|
||||
while len(tokens) > 0:
|
||||
out, state = self.model.forward(tokens[:args.chunk_len], state)
|
||||
tokens = tokens[args.chunk_len:]
|
||||
if i == 0:
|
||||
begin_token = len(all_tokens)
|
||||
last_token_posi = begin_token
|
||||
# cache the model state after scanning the context
|
||||
# we don't cache the state after processing our own generated tokens because
|
||||
# the output string might be post-processed arbitrarily. Therefore, what's fed into the model
|
||||
# on the next round of chat might be slightly different what what it output on the previous round
|
||||
if i == 0:
|
||||
self.cached_context += ctx
|
||||
self.cached_model_state = copy.deepcopy(state)
|
||||
self.cached_output_logits = copy.deepcopy(out)
|
||||
|
||||
# adjust probabilities
|
||||
for n in args.token_ban:
|
||||
out[n] = -float('inf')
|
||||
|
||||
for n in occurrence:
|
||||
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
||||
|
||||
# sampler
|
||||
token = self.pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k)
|
||||
if token in args.token_stop:
|
||||
break
|
||||
|
||||
all_tokens += [token]
|
||||
if token not in occurrence:
|
||||
occurrence[token] = 1
|
||||
else:
|
||||
occurrence[token] += 1
|
||||
|
||||
# output
|
||||
tmp = self.pipeline.decode(all_tokens[last_token_posi:])
|
||||
if '\ufffd' not in tmp: # is valid utf-8 string?
|
||||
if callback:
|
||||
callback(tmp)
|
||||
|
||||
out_str += tmp
|
||||
last_token_posi = begin_token + i + 1
|
||||
return out_str
|
||||
|
||||
|
||||
class RWKVTokenizer:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(self, path):
|
||||
tokenizer_path = path / "20B_tokenizer.json"
|
||||
tokenizer = Tokenizer.from_file(str(tokenizer_path))
|
||||
result = self()
|
||||
result.tokenizer = tokenizer
|
||||
return result
|
||||
|
||||
def encode(self, prompt):
|
||||
return self.tokenizer.encode(prompt).ids
|
||||
|
||||
def decode(self, ids):
|
||||
return self.tokenizer.decode(ids)
|
@ -65,7 +65,6 @@ def load_model(model_name, loader=None):
|
||||
'GPTQ-for-LLaMa': GPTQ_loader,
|
||||
'llama.cpp': llamacpp_loader,
|
||||
'llamacpp_HF': llamacpp_HF_loader,
|
||||
'RWKV': RWKV_loader,
|
||||
'ExLlamav2': ExLlamav2_loader,
|
||||
'ExLlamav2_HF': ExLlamav2_HF_loader,
|
||||
'ctransformers': ctransformers_loader,
|
||||
@ -405,23 +404,6 @@ def HQQ_loader(model_name):
|
||||
return model
|
||||
|
||||
|
||||
def RWKV_loader(model_name):
|
||||
'''
|
||||
This loader is not currently maintained as RWKV can now be loaded
|
||||
through the transformers library.
|
||||
'''
|
||||
from modules.RWKV import RWKVModel, RWKVTokenizer
|
||||
|
||||
model = RWKVModel.from_pretrained(
|
||||
Path(f'{shared.args.model_dir}/{model_name}'),
|
||||
dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16",
|
||||
device="cpu" if shared.args.cpu else "xpu" if is_xpu_available() else "cuda"
|
||||
)
|
||||
|
||||
tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir))
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def get_max_memory_dict():
|
||||
max_memory = {}
|
||||
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
|
||||
|
@ -157,8 +157,6 @@ def infer_loader(model_name, model_settings):
|
||||
loader = 'llama.cpp'
|
||||
elif re.match(r'.*\.gguf', model_name.lower()):
|
||||
loader = 'llama.cpp'
|
||||
elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
|
||||
loader = 'RWKV'
|
||||
elif re.match(r'.*exl2', model_name.lower()):
|
||||
loader = 'ExLlamav2_HF'
|
||||
elif re.match(r'.*-hqq', model_name.lower()):
|
||||
|
@ -165,11 +165,6 @@ group.add_argument('--deepspeed', action='store_true', help='Enable the use of D
|
||||
group.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
||||
group.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
||||
|
||||
# RWKV
|
||||
group = parser.add_argument_group('RWKV')
|
||||
group.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
|
||||
group.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
|
||||
|
||||
# RoPE
|
||||
group = parser.add_argument_group('RoPE')
|
||||
group.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
|
||||
|
@ -44,7 +44,7 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
|
||||
yield ''
|
||||
return
|
||||
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'Exllamav2Model', 'CtransformersModel']:
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel']:
|
||||
generate_func = generate_reply_custom
|
||||
else:
|
||||
generate_func = generate_reply_HF
|
||||
@ -118,7 +118,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
|
||||
if shared.tokenizer is None:
|
||||
raise ValueError('No tokenizer is loaded')
|
||||
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'CtransformersModel', 'Exllamav2Model']:
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'CtransformersModel', 'Exllamav2Model']:
|
||||
input_ids = shared.tokenizer.encode(str(prompt))
|
||||
if shared.model.__class__.__name__ not in ['Exllamav2Model']:
|
||||
input_ids = np.array(input_ids).reshape(1, len(input_ids))
|
||||
@ -132,7 +132,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
|
||||
if truncation_length is not None:
|
||||
input_ids = input_ids[:, -truncation_length:]
|
||||
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu:
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu:
|
||||
return input_ids
|
||||
elif shared.args.deepspeed:
|
||||
return input_ids.to(device=local_rank)
|
||||
|
Loading…
Reference in New Issue
Block a user