mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Remove RWKV loader (#5130)
This commit is contained in:
parent
0e54a09bcb
commit
2734ce3e4c
@ -312,13 +312,6 @@ List of command-line flags
|
|||||||
| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. |
|
| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. |
|
||||||
| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. |
|
| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. |
|
||||||
|
|
||||||
#### RWKV
|
|
||||||
|
|
||||||
| Flag | Description |
|
|
||||||
|---------------------------------|-------------|
|
|
||||||
| `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". |
|
|
||||||
| `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. |
|
|
||||||
|
|
||||||
#### RoPE (for llama.cpp, ExLlamaV2, and transformers)
|
#### RoPE (for llama.cpp, ExLlamaV2, and transformers)
|
||||||
|
|
||||||
| Flag | Description |
|
| Flag | Description |
|
||||||
|
154
modules/RWKV.py
154
modules/RWKV.py
@ -1,154 +0,0 @@
|
|||||||
'''
|
|
||||||
This loader is not currently maintained as RWKV can now be loaded
|
|
||||||
through the transformers library.
|
|
||||||
'''
|
|
||||||
|
|
||||||
import copy
|
|
||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from tokenizers import Tokenizer
|
|
||||||
from transformers import is_torch_xpu_available
|
|
||||||
|
|
||||||
import modules.shared as shared
|
|
||||||
from modules.callbacks import Iteratorize
|
|
||||||
|
|
||||||
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
|
||||||
|
|
||||||
os.environ['RWKV_JIT_ON'] = '1'
|
|
||||||
os.environ["RWKV_CUDA_ON"] = '1' if shared.args.rwkv_cuda_on else '0' # use CUDA kernel for seq mode (much faster)
|
|
||||||
|
|
||||||
from rwkv.model import RWKV
|
|
||||||
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
|
||||||
|
|
||||||
|
|
||||||
class RWKVModel:
|
|
||||||
def __init__(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_pretrained(self, path, dtype="bf16" if is_torch_xpu_available() else "fp16", device="xpu" if is_torch_xpu_available() else "cuda"):
|
|
||||||
tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
|
|
||||||
if shared.args.rwkv_strategy is None:
|
|
||||||
model = RWKV(model=str(path), strategy=f'{device} {dtype}')
|
|
||||||
else:
|
|
||||||
model = RWKV(model=str(path), strategy=shared.args.rwkv_strategy)
|
|
||||||
|
|
||||||
pipeline = PIPELINE(model, str(tokenizer_path))
|
|
||||||
result = self()
|
|
||||||
result.pipeline = pipeline
|
|
||||||
result.model = model
|
|
||||||
result.cached_context = ""
|
|
||||||
result.cached_model_state = None
|
|
||||||
result.cached_output_logits = None
|
|
||||||
return result
|
|
||||||
|
|
||||||
def generate(self, prompt, state, callback=None):
|
|
||||||
args = PIPELINE_ARGS(
|
|
||||||
temperature=state['temperature'],
|
|
||||||
top_p=state['top_p'],
|
|
||||||
top_k=state['top_k'],
|
|
||||||
alpha_frequency=0.1, # Frequency Penalty (as in GPT-3)
|
|
||||||
alpha_presence=0.1, # Presence Penalty (as in GPT-3)
|
|
||||||
token_ban=[0], # ban the generation of some tokens
|
|
||||||
token_stop=[]
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.cached_context != "":
|
|
||||||
if prompt.startswith(self.cached_context):
|
|
||||||
prompt = prompt[len(self.cached_context):]
|
|
||||||
else:
|
|
||||||
self.cached_context = ""
|
|
||||||
self.cached_model_state = None
|
|
||||||
self.cached_output_logits = None
|
|
||||||
|
|
||||||
# out = self.pipeline.generate(prompt, token_count=state['max_new_tokens'], args=args, callback=callback)
|
|
||||||
out = self.generate_from_cached_state(prompt, token_count=state['max_new_tokens'], args=args, callback=callback)
|
|
||||||
return out
|
|
||||||
|
|
||||||
def generate_with_streaming(self, *args, **kwargs):
|
|
||||||
with Iteratorize(self.generate, args, kwargs, callback=None) as generator:
|
|
||||||
reply = ''
|
|
||||||
for token in generator:
|
|
||||||
reply += token
|
|
||||||
yield reply
|
|
||||||
|
|
||||||
# Similar to the PIPELINE.generate, but lets us maintain the cached_model_state
|
|
||||||
def generate_from_cached_state(self, ctx="", token_count=20, args=None, callback=None):
|
|
||||||
all_tokens = []
|
|
||||||
out_str = ''
|
|
||||||
occurrence = {}
|
|
||||||
state = copy.deepcopy(self.cached_model_state) if self.cached_model_state is not None else None
|
|
||||||
|
|
||||||
# if we ended up with an empty context, just reuse the cached logits
|
|
||||||
# this can happen if a user undoes a message and then sends the exact message again
|
|
||||||
# in that case the full context ends up being the same as the cached_context, so the remaining context is empty.
|
|
||||||
if ctx == "":
|
|
||||||
out = self.cached_output_logits
|
|
||||||
|
|
||||||
token = None
|
|
||||||
for i in range(token_count):
|
|
||||||
# forward
|
|
||||||
tokens = self.pipeline.encode(ctx) if i == 0 else [token]
|
|
||||||
while len(tokens) > 0:
|
|
||||||
out, state = self.model.forward(tokens[:args.chunk_len], state)
|
|
||||||
tokens = tokens[args.chunk_len:]
|
|
||||||
if i == 0:
|
|
||||||
begin_token = len(all_tokens)
|
|
||||||
last_token_posi = begin_token
|
|
||||||
# cache the model state after scanning the context
|
|
||||||
# we don't cache the state after processing our own generated tokens because
|
|
||||||
# the output string might be post-processed arbitrarily. Therefore, what's fed into the model
|
|
||||||
# on the next round of chat might be slightly different what what it output on the previous round
|
|
||||||
if i == 0:
|
|
||||||
self.cached_context += ctx
|
|
||||||
self.cached_model_state = copy.deepcopy(state)
|
|
||||||
self.cached_output_logits = copy.deepcopy(out)
|
|
||||||
|
|
||||||
# adjust probabilities
|
|
||||||
for n in args.token_ban:
|
|
||||||
out[n] = -float('inf')
|
|
||||||
|
|
||||||
for n in occurrence:
|
|
||||||
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
|
||||||
|
|
||||||
# sampler
|
|
||||||
token = self.pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k)
|
|
||||||
if token in args.token_stop:
|
|
||||||
break
|
|
||||||
|
|
||||||
all_tokens += [token]
|
|
||||||
if token not in occurrence:
|
|
||||||
occurrence[token] = 1
|
|
||||||
else:
|
|
||||||
occurrence[token] += 1
|
|
||||||
|
|
||||||
# output
|
|
||||||
tmp = self.pipeline.decode(all_tokens[last_token_posi:])
|
|
||||||
if '\ufffd' not in tmp: # is valid utf-8 string?
|
|
||||||
if callback:
|
|
||||||
callback(tmp)
|
|
||||||
|
|
||||||
out_str += tmp
|
|
||||||
last_token_posi = begin_token + i + 1
|
|
||||||
return out_str
|
|
||||||
|
|
||||||
|
|
||||||
class RWKVTokenizer:
|
|
||||||
def __init__(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_pretrained(self, path):
|
|
||||||
tokenizer_path = path / "20B_tokenizer.json"
|
|
||||||
tokenizer = Tokenizer.from_file(str(tokenizer_path))
|
|
||||||
result = self()
|
|
||||||
result.tokenizer = tokenizer
|
|
||||||
return result
|
|
||||||
|
|
||||||
def encode(self, prompt):
|
|
||||||
return self.tokenizer.encode(prompt).ids
|
|
||||||
|
|
||||||
def decode(self, ids):
|
|
||||||
return self.tokenizer.decode(ids)
|
|
@ -65,7 +65,6 @@ def load_model(model_name, loader=None):
|
|||||||
'GPTQ-for-LLaMa': GPTQ_loader,
|
'GPTQ-for-LLaMa': GPTQ_loader,
|
||||||
'llama.cpp': llamacpp_loader,
|
'llama.cpp': llamacpp_loader,
|
||||||
'llamacpp_HF': llamacpp_HF_loader,
|
'llamacpp_HF': llamacpp_HF_loader,
|
||||||
'RWKV': RWKV_loader,
|
|
||||||
'ExLlamav2': ExLlamav2_loader,
|
'ExLlamav2': ExLlamav2_loader,
|
||||||
'ExLlamav2_HF': ExLlamav2_HF_loader,
|
'ExLlamav2_HF': ExLlamav2_HF_loader,
|
||||||
'ctransformers': ctransformers_loader,
|
'ctransformers': ctransformers_loader,
|
||||||
@ -405,23 +404,6 @@ def HQQ_loader(model_name):
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def RWKV_loader(model_name):
|
|
||||||
'''
|
|
||||||
This loader is not currently maintained as RWKV can now be loaded
|
|
||||||
through the transformers library.
|
|
||||||
'''
|
|
||||||
from modules.RWKV import RWKVModel, RWKVTokenizer
|
|
||||||
|
|
||||||
model = RWKVModel.from_pretrained(
|
|
||||||
Path(f'{shared.args.model_dir}/{model_name}'),
|
|
||||||
dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16",
|
|
||||||
device="cpu" if shared.args.cpu else "xpu" if is_xpu_available() else "cuda"
|
|
||||||
)
|
|
||||||
|
|
||||||
tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir))
|
|
||||||
return model, tokenizer
|
|
||||||
|
|
||||||
|
|
||||||
def get_max_memory_dict():
|
def get_max_memory_dict():
|
||||||
max_memory = {}
|
max_memory = {}
|
||||||
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
|
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
|
||||||
|
@ -157,8 +157,6 @@ def infer_loader(model_name, model_settings):
|
|||||||
loader = 'llama.cpp'
|
loader = 'llama.cpp'
|
||||||
elif re.match(r'.*\.gguf', model_name.lower()):
|
elif re.match(r'.*\.gguf', model_name.lower()):
|
||||||
loader = 'llama.cpp'
|
loader = 'llama.cpp'
|
||||||
elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
|
|
||||||
loader = 'RWKV'
|
|
||||||
elif re.match(r'.*exl2', model_name.lower()):
|
elif re.match(r'.*exl2', model_name.lower()):
|
||||||
loader = 'ExLlamav2_HF'
|
loader = 'ExLlamav2_HF'
|
||||||
elif re.match(r'.*-hqq', model_name.lower()):
|
elif re.match(r'.*-hqq', model_name.lower()):
|
||||||
|
@ -165,11 +165,6 @@ group.add_argument('--deepspeed', action='store_true', help='Enable the use of D
|
|||||||
group.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
group.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
||||||
group.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
group.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
||||||
|
|
||||||
# RWKV
|
|
||||||
group = parser.add_argument_group('RWKV')
|
|
||||||
group.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
|
|
||||||
group.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
|
|
||||||
|
|
||||||
# RoPE
|
# RoPE
|
||||||
group = parser.add_argument_group('RoPE')
|
group = parser.add_argument_group('RoPE')
|
||||||
group.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
|
group.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
|
||||||
|
@ -44,7 +44,7 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
|
|||||||
yield ''
|
yield ''
|
||||||
return
|
return
|
||||||
|
|
||||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'Exllamav2Model', 'CtransformersModel']:
|
if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel']:
|
||||||
generate_func = generate_reply_custom
|
generate_func = generate_reply_custom
|
||||||
else:
|
else:
|
||||||
generate_func = generate_reply_HF
|
generate_func = generate_reply_HF
|
||||||
@ -118,7 +118,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
|
|||||||
if shared.tokenizer is None:
|
if shared.tokenizer is None:
|
||||||
raise ValueError('No tokenizer is loaded')
|
raise ValueError('No tokenizer is loaded')
|
||||||
|
|
||||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'CtransformersModel', 'Exllamav2Model']:
|
if shared.model.__class__.__name__ in ['LlamaCppModel', 'CtransformersModel', 'Exllamav2Model']:
|
||||||
input_ids = shared.tokenizer.encode(str(prompt))
|
input_ids = shared.tokenizer.encode(str(prompt))
|
||||||
if shared.model.__class__.__name__ not in ['Exllamav2Model']:
|
if shared.model.__class__.__name__ not in ['Exllamav2Model']:
|
||||||
input_ids = np.array(input_ids).reshape(1, len(input_ids))
|
input_ids = np.array(input_ids).reshape(1, len(input_ids))
|
||||||
@ -132,7 +132,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
|
|||||||
if truncation_length is not None:
|
if truncation_length is not None:
|
||||||
input_ids = input_ids[:, -truncation_length:]
|
input_ids = input_ids[:, -truncation_length:]
|
||||||
|
|
||||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu:
|
if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu:
|
||||||
return input_ids
|
return input_ids
|
||||||
elif shared.args.deepspeed:
|
elif shared.args.deepspeed:
|
||||||
return input_ids.to(device=local_rank)
|
return input_ids.to(device=local_rank)
|
||||||
|
Loading…
Reference in New Issue
Block a user