mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-12-23 21:18:00 +01:00
Remove unused code
This commit is contained in:
parent
ec14d9b725
commit
3316e33d14
@ -10,7 +10,6 @@ import transformers
|
||||
from transformers import AutoConfig, AutoModelForCausalLM
|
||||
|
||||
import modules.shared as shared
|
||||
from server import get_model_specific_settings
|
||||
|
||||
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
|
||||
|
||||
@ -115,6 +114,7 @@ def find_quantized_model_file(model_name):
|
||||
for ext in ['.safetensors', '.pt']
|
||||
for hyphen in ['-', f'/{model_name}-', '/']
|
||||
]
|
||||
|
||||
for path in priority_name_list:
|
||||
if path.exists():
|
||||
pt_path = path
|
||||
@ -143,19 +143,13 @@ def find_quantized_model_file(model_name):
|
||||
|
||||
# The function that loads the model in modules/models.py
|
||||
def load_quantized(model_name):
|
||||
# Find the model type
|
||||
if not shared.args.model_type:
|
||||
settings = get_model_specific_settings(model_name)
|
||||
if 'model_type' in settings and settings['model_type'] != 'None':
|
||||
model_type = settings['model_type']
|
||||
else:
|
||||
logging.error("The model could not be loaded because its type could not be inferred from its name.")
|
||||
logging.error("Please specify the type manually using the --model_type argument.")
|
||||
return
|
||||
else:
|
||||
model_type = shared.args.model_type.lower()
|
||||
if shared.args.model_type is None:
|
||||
logging.error("The model could not be loaded because its type could not be inferred from its name.")
|
||||
logging.error("Please specify the type manually using the --model_type argument.")
|
||||
return
|
||||
|
||||
# Select the appropriate load_quant function
|
||||
model_type = shared.args.model_type.lower()
|
||||
if shared.args.pre_layer and model_type == 'llama':
|
||||
load_quant = llama_inference_offload.load_quant
|
||||
elif model_type in ('llama', 'opt', 'gptj'):
|
||||
|
@ -252,7 +252,7 @@ def load_model(model_name):
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}/"), trust_remote_code=trust_remote_code)
|
||||
|
||||
logging.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||
logging.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.\n")
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
|
@ -372,8 +372,6 @@ def create_model_menus():
|
||||
|
||||
load.click(
|
||||
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
|
||||
ui.apply_interface_values, shared.gradio['interface_state'],
|
||||
[shared.gradio[k] for k in ui.list_interface_input_elements(chat=shared.is_chat())], show_progress=False).then(
|
||||
update_model_parameters, shared.gradio['interface_state'], None).then(
|
||||
partial(load_model_wrapper, autoload=True), shared.gradio['model_menu'], shared.gradio['model_status'], show_progress=False)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user