Remove unused code

This commit is contained in:
oobabooga 2023-05-10 11:59:59 -03:00
parent ec14d9b725
commit 3316e33d14
3 changed files with 7 additions and 15 deletions

View File

@ -10,7 +10,6 @@ import transformers
from transformers import AutoConfig, AutoModelForCausalLM from transformers import AutoConfig, AutoModelForCausalLM
import modules.shared as shared import modules.shared as shared
from server import get_model_specific_settings
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
@ -115,6 +114,7 @@ def find_quantized_model_file(model_name):
for ext in ['.safetensors', '.pt'] for ext in ['.safetensors', '.pt']
for hyphen in ['-', f'/{model_name}-', '/'] for hyphen in ['-', f'/{model_name}-', '/']
] ]
for path in priority_name_list: for path in priority_name_list:
if path.exists(): if path.exists():
pt_path = path pt_path = path
@ -143,19 +143,13 @@ def find_quantized_model_file(model_name):
# The function that loads the model in modules/models.py # The function that loads the model in modules/models.py
def load_quantized(model_name): def load_quantized(model_name):
# Find the model type if shared.args.model_type is None:
if not shared.args.model_type: logging.error("The model could not be loaded because its type could not be inferred from its name.")
settings = get_model_specific_settings(model_name) logging.error("Please specify the type manually using the --model_type argument.")
if 'model_type' in settings and settings['model_type'] != 'None': return
model_type = settings['model_type']
else:
logging.error("The model could not be loaded because its type could not be inferred from its name.")
logging.error("Please specify the type manually using the --model_type argument.")
return
else:
model_type = shared.args.model_type.lower()
# Select the appropriate load_quant function # Select the appropriate load_quant function
model_type = shared.args.model_type.lower()
if shared.args.pre_layer and model_type == 'llama': if shared.args.pre_layer and model_type == 'llama':
load_quant = llama_inference_offload.load_quant load_quant = llama_inference_offload.load_quant
elif model_type in ('llama', 'opt', 'gptj'): elif model_type in ('llama', 'opt', 'gptj'):

View File

@ -252,7 +252,7 @@ def load_model(model_name):
else: else:
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}/"), trust_remote_code=trust_remote_code) tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}/"), trust_remote_code=trust_remote_code)
logging.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.") logging.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.\n")
return model, tokenizer return model, tokenizer

View File

@ -372,8 +372,6 @@ def create_model_menus():
load.click( load.click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then( ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
ui.apply_interface_values, shared.gradio['interface_state'],
[shared.gradio[k] for k in ui.list_interface_input_elements(chat=shared.is_chat())], show_progress=False).then(
update_model_parameters, shared.gradio['interface_state'], None).then( update_model_parameters, shared.gradio['interface_state'], None).then(
partial(load_model_wrapper, autoload=True), shared.gradio['model_menu'], shared.gradio['model_status'], show_progress=False) partial(load_model_wrapper, autoload=True), shared.gradio['model_menu'], shared.gradio['model_status'], show_progress=False)