mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-26 20:22:42 +01:00
Merge pull request #189 from oobabooga/new-streaming
New streaming method (much faster)
This commit is contained in:
commit
3437de686c
@ -7,6 +7,7 @@ import numpy as np
|
||||
from tokenizers import Tokenizer
|
||||
|
||||
import modules.shared as shared
|
||||
from modules.callbacks import Iteratorize
|
||||
|
||||
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
||||
|
||||
@ -49,11 +50,11 @@ class RWKVModel:
|
||||
return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
|
||||
|
||||
def generate_with_streaming(self, **kwargs):
|
||||
iterable = Iteratorize(self.generate, kwargs, callback=None)
|
||||
reply = kwargs['context']
|
||||
for token in iterable:
|
||||
reply += token
|
||||
yield reply
|
||||
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
||||
reply = kwargs['context']
|
||||
for token in generator:
|
||||
reply += token
|
||||
yield reply
|
||||
|
||||
class RWKVTokenizer:
|
||||
def __init__(self):
|
||||
@ -73,38 +74,3 @@ class RWKVTokenizer:
|
||||
|
||||
def decode(self, ids):
|
||||
return self.tokenizer.decode(ids)
|
||||
|
||||
class Iteratorize:
|
||||
|
||||
"""
|
||||
Transforms a function that takes a callback
|
||||
into a lazy iterator (generator).
|
||||
"""
|
||||
|
||||
def __init__(self, func, kwargs={}, callback=None):
|
||||
self.mfunc=func
|
||||
self.c_callback=callback
|
||||
self.q = Queue(maxsize=1)
|
||||
self.sentinel = object()
|
||||
self.kwargs = kwargs
|
||||
|
||||
def _callback(val):
|
||||
self.q.put(val)
|
||||
|
||||
def gentask():
|
||||
ret = self.mfunc(callback=_callback, **self.kwargs)
|
||||
self.q.put(self.sentinel)
|
||||
if self.c_callback:
|
||||
self.c_callback(ret)
|
||||
|
||||
Thread(target=gentask).start()
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
obj = self.q.get(True,None)
|
||||
if obj is self.sentinel:
|
||||
raise StopIteration
|
||||
else:
|
||||
return obj
|
||||
|
98
modules/callbacks.py
Normal file
98
modules/callbacks.py
Normal file
@ -0,0 +1,98 @@
|
||||
import gc
|
||||
from queue import Queue
|
||||
from threading import Thread
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
import modules.shared as shared
|
||||
|
||||
# Copied from https://github.com/PygmalionAI/gradio-ui/
|
||||
class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):
|
||||
|
||||
def __init__(self, sentinel_token_ids: torch.LongTensor,
|
||||
starting_idx: int):
|
||||
transformers.StoppingCriteria.__init__(self)
|
||||
self.sentinel_token_ids = sentinel_token_ids
|
||||
self.starting_idx = starting_idx
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor,
|
||||
_scores: torch.FloatTensor) -> bool:
|
||||
for sample in input_ids:
|
||||
trimmed_sample = sample[self.starting_idx:]
|
||||
# Can't unfold, output is still too tiny. Skip.
|
||||
if trimmed_sample.shape[-1] < self.sentinel_token_ids.shape[-1]:
|
||||
continue
|
||||
|
||||
for window in trimmed_sample.unfold(
|
||||
0, self.sentinel_token_ids.shape[-1], 1):
|
||||
if torch.all(torch.eq(self.sentinel_token_ids, window)):
|
||||
return True
|
||||
return False
|
||||
|
||||
class Stream(transformers.StoppingCriteria):
|
||||
def __init__(self, callback_func=None):
|
||||
self.callback_func = callback_func
|
||||
|
||||
def __call__(self, input_ids, scores) -> bool:
|
||||
if self.callback_func is not None:
|
||||
self.callback_func(input_ids[0])
|
||||
return False
|
||||
|
||||
class Iteratorize:
|
||||
|
||||
"""
|
||||
Transforms a function that takes a callback
|
||||
into a lazy iterator (generator).
|
||||
"""
|
||||
|
||||
def __init__(self, func, kwargs={}, callback=None):
|
||||
self.mfunc=func
|
||||
self.c_callback=callback
|
||||
self.q = Queue()
|
||||
self.sentinel = object()
|
||||
self.kwargs = kwargs
|
||||
self.stop_now = False
|
||||
|
||||
def _callback(val):
|
||||
if self.stop_now:
|
||||
raise ValueError
|
||||
self.q.put(val)
|
||||
|
||||
def gentask():
|
||||
try:
|
||||
ret = self.mfunc(callback=_callback, **self.kwargs)
|
||||
except ValueError:
|
||||
pass
|
||||
clear_torch_cache()
|
||||
self.q.put(self.sentinel)
|
||||
if self.c_callback:
|
||||
self.c_callback(ret)
|
||||
|
||||
self.thread = Thread(target=gentask)
|
||||
self.thread.start()
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
obj = self.q.get(True,None)
|
||||
if obj is self.sentinel:
|
||||
raise StopIteration
|
||||
else:
|
||||
return obj
|
||||
|
||||
def __del__(self):
|
||||
clear_torch_cache()
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.stop_now = True
|
||||
clear_torch_cache()
|
||||
|
||||
def clear_torch_cache():
|
||||
gc.collect()
|
||||
if not shared.args.cpu:
|
||||
torch.cuda.empty_cache()
|
@ -1,32 +0,0 @@
|
||||
'''
|
||||
This code was copied from
|
||||
|
||||
https://github.com/PygmalionAI/gradio-ui/
|
||||
|
||||
'''
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
|
||||
class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):
|
||||
|
||||
def __init__(self, sentinel_token_ids: torch.LongTensor,
|
||||
starting_idx: int):
|
||||
transformers.StoppingCriteria.__init__(self)
|
||||
self.sentinel_token_ids = sentinel_token_ids
|
||||
self.starting_idx = starting_idx
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor,
|
||||
_scores: torch.FloatTensor) -> bool:
|
||||
for sample in input_ids:
|
||||
trimmed_sample = sample[self.starting_idx:]
|
||||
# Can't unfold, output is still too tiny. Skip.
|
||||
if trimmed_sample.shape[-1] < self.sentinel_token_ids.shape[-1]:
|
||||
continue
|
||||
|
||||
for window in trimmed_sample.unfold(
|
||||
0, self.sentinel_token_ids.shape[-1], 1):
|
||||
if torch.all(torch.eq(self.sentinel_token_ids, window)):
|
||||
return True
|
||||
return False
|
@ -5,13 +5,13 @@ import time
|
||||
import numpy as np
|
||||
import torch
|
||||
import transformers
|
||||
from tqdm import tqdm
|
||||
|
||||
import modules.shared as shared
|
||||
from modules.callbacks import (Iteratorize, Stream,
|
||||
_SentinelTokenStoppingCriteria)
|
||||
from modules.extensions import apply_extensions
|
||||
from modules.html_generator import generate_4chan_html, generate_basic_html
|
||||
from modules.models import local_rank
|
||||
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
|
||||
|
||||
|
||||
def get_max_prompt_length(tokens):
|
||||
@ -92,19 +92,22 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
# These models are not part of Hugging Face, so we handle them
|
||||
# separately and terminate the function call earlier
|
||||
if shared.is_RWKV:
|
||||
if shared.args.no_stream:
|
||||
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
else:
|
||||
yield formatted_outputs(question, shared.model_name)
|
||||
# RWKV has proper streaming, which is very nice.
|
||||
# No need to generate 8 tokens at a time.
|
||||
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k):
|
||||
try:
|
||||
if shared.args.no_stream:
|
||||
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
t1 = time.time()
|
||||
print(f"Output generated in {(t1-t0):.2f} seconds.")
|
||||
return
|
||||
else:
|
||||
yield formatted_outputs(question, shared.model_name)
|
||||
# RWKV has proper streaming, which is very nice.
|
||||
# No need to generate 8 tokens at a time.
|
||||
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k):
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
finally:
|
||||
t1 = time.time()
|
||||
output = encode(reply)[0]
|
||||
input_ids = encode(question)
|
||||
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
|
||||
return
|
||||
|
||||
original_question = question
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
@ -113,23 +116,19 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
print(f"\n\n{question}\n--------------------\n")
|
||||
|
||||
input_ids = encode(question, max_new_tokens)
|
||||
original_input_ids = input_ids
|
||||
output = input_ids[0]
|
||||
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
|
||||
n = shared.tokenizer.eos_token_id if eos_token is None else int(encode(eos_token)[0][-1])
|
||||
stopping_criteria_list = transformers.StoppingCriteriaList()
|
||||
if stopping_string is not None:
|
||||
# The stopping_criteria code below was copied from
|
||||
# https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
|
||||
# Copied from https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
|
||||
t = encode(stopping_string, 0, add_special_tokens=False)
|
||||
stopping_criteria_list = transformers.StoppingCriteriaList([
|
||||
_SentinelTokenStoppingCriteria(
|
||||
sentinel_token_ids=t,
|
||||
starting_idx=len(input_ids[0])
|
||||
)
|
||||
])
|
||||
else:
|
||||
stopping_criteria_list = None
|
||||
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
|
||||
|
||||
if not shared.args.flexgen:
|
||||
generate_params = [
|
||||
f"max_new_tokens=max_new_tokens",
|
||||
f"eos_token_id={n}",
|
||||
f"stopping_criteria=stopping_criteria_list",
|
||||
f"do_sample={do_sample}",
|
||||
@ -147,44 +146,23 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
]
|
||||
else:
|
||||
generate_params = [
|
||||
f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}",
|
||||
f"do_sample={do_sample}",
|
||||
f"temperature={temperature}",
|
||||
f"stop={n}",
|
||||
]
|
||||
if shared.args.deepspeed:
|
||||
generate_params.append("synced_gpus=True")
|
||||
if shared.args.no_stream:
|
||||
generate_params.append("max_new_tokens=max_new_tokens")
|
||||
else:
|
||||
generate_params.append("max_new_tokens=8")
|
||||
if shared.soft_prompt:
|
||||
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
||||
generate_params.insert(0, "inputs_embeds=inputs_embeds")
|
||||
generate_params.insert(0, "filler_input_ids")
|
||||
generate_params.insert(0, "inputs=filler_input_ids")
|
||||
else:
|
||||
generate_params.insert(0, "input_ids")
|
||||
|
||||
# Generate the entire reply at once
|
||||
if shared.args.no_stream:
|
||||
with torch.no_grad():
|
||||
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
|
||||
reply = decode(output)
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
|
||||
t1 = time.time()
|
||||
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
# Generate the reply 8 tokens at a time
|
||||
else:
|
||||
yield formatted_outputs(original_question, shared.model_name)
|
||||
for i in tqdm(range(max_new_tokens//8+1)):
|
||||
clear_torch_cache()
|
||||
generate_params.insert(0, "inputs=input_ids")
|
||||
|
||||
try:
|
||||
# Generate the entire reply at once.
|
||||
if shared.args.no_stream:
|
||||
with torch.no_grad():
|
||||
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
||||
if shared.soft_prompt:
|
||||
@ -193,16 +171,58 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
reply = decode(output)
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
if not shared.args.flexgen:
|
||||
if output[-1] == n:
|
||||
break
|
||||
input_ids = torch.reshape(output, (1, output.shape[0]))
|
||||
else:
|
||||
# Stream the reply 1 token at a time.
|
||||
# This is based on the trick of using 'stopping_criteria' to create an iterator.
|
||||
elif not shared.args.flexgen:
|
||||
|
||||
def generate_with_callback(callback=None, **kwargs):
|
||||
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
|
||||
clear_torch_cache()
|
||||
with torch.no_grad():
|
||||
shared.model.generate(**kwargs)
|
||||
|
||||
def generate_with_streaming(**kwargs):
|
||||
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
||||
|
||||
yield formatted_outputs(original_question, shared.model_name)
|
||||
with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator:
|
||||
for output in generator:
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
reply = decode(output)
|
||||
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
if output[-1] == n:
|
||||
break
|
||||
|
||||
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
|
||||
else:
|
||||
for i in range(max_new_tokens//8+1):
|
||||
clear_torch_cache()
|
||||
with torch.no_grad():
|
||||
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0]
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
reply = decode(output)
|
||||
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
|
||||
break
|
||||
input_ids = np.reshape(output, (1, output.shape[0]))
|
||||
|
||||
if shared.soft_prompt:
|
||||
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
||||
input_ids = np.reshape(output, (1, output.shape[0]))
|
||||
if shared.soft_prompt:
|
||||
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
||||
|
||||
finally:
|
||||
t1 = time.time()
|
||||
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(original_input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(original_input_ids[0])} tokens)")
|
||||
return
|
||||
|
@ -18,9 +18,6 @@ from modules.html_generator import generate_chat_html
|
||||
from modules.models import load_model, load_soft_prompt
|
||||
from modules.text_generation import generate_reply
|
||||
|
||||
if (shared.args.chat or shared.args.cai_chat) and not shared.args.no_stream:
|
||||
print('Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n')
|
||||
|
||||
# Loading custom settings
|
||||
settings_file = None
|
||||
if shared.args.settings is not None and Path(shared.args.settings).exists():
|
||||
|
Loading…
Reference in New Issue
Block a user