mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-12-24 13:28:59 +01:00
extensions/openai: load extension settings via settings.yaml (#3953)
This commit is contained in:
parent
cc8eda298a
commit
347aed4254
@ -44,6 +44,18 @@ OPENAI_API_BASE=http://0.0.0.0:5001/v1
|
||||
|
||||
If needed, replace 0.0.0.0 with the IP/port of your server.
|
||||
|
||||
|
||||
## Settings
|
||||
|
||||
To adjust your default settings, you can add the following to your `settings.yaml` file.
|
||||
|
||||
```
|
||||
openai-port: 5002
|
||||
openai-embedding_device: cuda
|
||||
openai-sd_webui_url: http://127.0.0.1:7861
|
||||
openai-debug: 1
|
||||
```
|
||||
|
||||
### Models
|
||||
|
||||
This has been successfully tested with Alpaca, Koala, Vicuna, WizardLM and their variants, (ex. gpt4-x-alpaca, GPT4all-snoozy, stable-vicuna, wizard-vicuna, etc.) and many others. Models that have been trained for **Instruction Following** work best. If you test with other models please let me know how it goes. Less than satisfying results (so far) from: RWKV-4-Raven, llama, mpt-7b-instruct/chat.
|
||||
|
@ -6,6 +6,7 @@
|
||||
import os
|
||||
|
||||
import sentence_transformers
|
||||
from extensions.openai.script import params
|
||||
|
||||
st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2"
|
||||
st_model = os.environ.get("OPENEDAI_EMBEDDING_MODEL", params.get('embedding_model', 'all-mpnet-base-v2'))
|
||||
model = sentence_transformers.SentenceTransformer(st_model)
|
||||
|
@ -5,15 +5,25 @@ from extensions.openai.errors import ServiceUnavailableError
|
||||
from extensions.openai.utils import debug_msg, float_list_to_base64
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2"
|
||||
embeddings_model = None
|
||||
# OPENEDAI_EMBEDDING_DEVICE: auto (best or cpu), cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone
|
||||
embeddings_device = os.environ.get("OPENEDAI_EMBEDDING_DEVICE", "cpu")
|
||||
if embeddings_device.lower() == 'auto':
|
||||
embeddings_device = None
|
||||
embeddings_params_initialized = False
|
||||
# using 'lazy loading' to avoid circular import
|
||||
# so this function will be executed only once
|
||||
def initialize_embedding_params():
|
||||
global embeddings_params_initialized
|
||||
if not embeddings_params_initialized:
|
||||
global st_model, embeddings_model, embeddings_device
|
||||
from extensions.openai.script import params
|
||||
st_model = os.environ.get("OPENEDAI_EMBEDDING_MODEL", params.get('embedding_model', 'all-mpnet-base-v2'))
|
||||
embeddings_model = None
|
||||
# OPENEDAI_EMBEDDING_DEVICE: auto (best or cpu), cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone
|
||||
embeddings_device = os.environ.get("OPENEDAI_EMBEDDING_DEVICE", params.get('embedding_device', 'cpu'))
|
||||
if embeddings_device.lower() == 'auto':
|
||||
embeddings_device = None
|
||||
embeddings_params_initialized = True
|
||||
|
||||
|
||||
def load_embedding_model(model: str) -> SentenceTransformer:
|
||||
initialize_embedding_params()
|
||||
global embeddings_device, embeddings_model
|
||||
try:
|
||||
embeddings_model = 'loading...' # flag
|
||||
@ -29,6 +39,7 @@ def load_embedding_model(model: str) -> SentenceTransformer:
|
||||
|
||||
|
||||
def get_embeddings_model() -> SentenceTransformer:
|
||||
initialize_embedding_params()
|
||||
global embeddings_model, st_model
|
||||
if st_model and not embeddings_model:
|
||||
embeddings_model = load_embedding_model(st_model) # lazy load the model
|
||||
@ -36,6 +47,7 @@ def get_embeddings_model() -> SentenceTransformer:
|
||||
|
||||
|
||||
def get_embeddings_model_name() -> str:
|
||||
initialize_embedding_params()
|
||||
global st_model
|
||||
return st_model
|
||||
|
||||
|
@ -49,9 +49,9 @@ def generations(prompt: str, size: str, response_format: str, n: int):
|
||||
'created': int(time.time()),
|
||||
'data': []
|
||||
}
|
||||
|
||||
from extensions.openai.script import params
|
||||
# TODO: support SD_WEBUI_AUTH username:password pair.
|
||||
sd_url = f"{os.environ['SD_WEBUI_URL']}/sdapi/v1/txt2img"
|
||||
sd_url = f"{os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', ''))}/sdapi/v1/txt2img"
|
||||
|
||||
response = requests.post(url=sd_url, json=payload)
|
||||
r = response.json()
|
||||
|
@ -25,10 +25,16 @@ import speech_recognition as sr
|
||||
from pydub import AudioSegment
|
||||
|
||||
params = {
|
||||
'port': int(os.environ.get('OPENEDAI_PORT')) if 'OPENEDAI_PORT' in os.environ else 5001,
|
||||
# default params
|
||||
'port': 5001,
|
||||
'embedding_device': 'cpu',
|
||||
'embedding_model': 'all-mpnet-base-v2',
|
||||
|
||||
# optional params
|
||||
'sd_webui_url': '',
|
||||
'debug': 0
|
||||
}
|
||||
|
||||
|
||||
class Handler(BaseHTTPRequestHandler):
|
||||
def send_access_control_headers(self):
|
||||
self.send_header("Access-Control-Allow-Origin", "*")
|
||||
@ -251,7 +257,7 @@ class Handler(BaseHTTPRequestHandler):
|
||||
self.return_json(response)
|
||||
|
||||
elif '/images/generations' in self.path:
|
||||
if 'SD_WEBUI_URL' not in os.environ:
|
||||
if not os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', '')):
|
||||
raise ServiceUnavailableError("Stable Diffusion not available. SD_WEBUI_URL not set.")
|
||||
|
||||
prompt = body['prompt']
|
||||
@ -313,12 +319,13 @@ class Handler(BaseHTTPRequestHandler):
|
||||
|
||||
|
||||
def run_server():
|
||||
server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', params['port'])
|
||||
port = int(os.environ.get('OPENEDAI_PORT', params.get('port', 5001)))
|
||||
server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', port)
|
||||
server = ThreadingHTTPServer(server_addr, Handler)
|
||||
if shared.args.share:
|
||||
try:
|
||||
from flask_cloudflared import _run_cloudflared
|
||||
public_url = _run_cloudflared(params['port'], params['port'] + 1)
|
||||
public_url = _run_cloudflared(port, port + 1)
|
||||
print(f'OpenAI compatible API ready at: OPENAI_API_BASE={public_url}/v1')
|
||||
except ImportError:
|
||||
print('You should install flask_cloudflared manually')
|
||||
|
@ -3,7 +3,6 @@ import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def float_list_to_base64(float_array: np.ndarray) -> str:
|
||||
# Convert the list to a float32 array that the OpenAPI client expects
|
||||
# float_array = np.array(float_list, dtype="float32")
|
||||
@ -26,5 +25,6 @@ def end_line(s):
|
||||
|
||||
|
||||
def debug_msg(*args, **kwargs):
|
||||
if 'OPENEDAI_DEBUG' in os.environ:
|
||||
from extensions.openai.script import params
|
||||
if os.environ.get("OPENEDAI_DEBUG", params.get('debug', 0)):
|
||||
print(*args, **kwargs)
|
||||
|
Loading…
Reference in New Issue
Block a user