mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-12-23 21:18:00 +01:00
LoRA Trainer: train_only_after
option to control which part of your input to train on (#2315)
This commit is contained in:
parent
9967e08b1f
commit
3cd7c5bdd0
@ -1,5 +1,6 @@
|
||||
import json
|
||||
import math
|
||||
import random
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
@ -39,7 +40,7 @@ except:
|
||||
|
||||
|
||||
WANT_INTERRUPT = False
|
||||
PARAMETERS = ["lora_name", "always_override", "save_steps", "micro_batch_size", "batch_size", "epochs", "learning_rate", "lr_scheduler_type", "lora_rank", "lora_alpha", "lora_dropout", "cutoff_len", "dataset", "eval_dataset", "format", "eval_steps", "raw_text_file", "overlap_len", "newline_favor_len", "higher_rank_limit", "warmup_steps", "optimizer", "hard_cut_string"]
|
||||
PARAMETERS = ["lora_name", "always_override", "save_steps", "micro_batch_size", "batch_size", "epochs", "learning_rate", "lr_scheduler_type", "lora_rank", "lora_alpha", "lora_dropout", "cutoff_len", "dataset", "eval_dataset", "format", "eval_steps", "raw_text_file", "overlap_len", "newline_favor_len", "higher_rank_limit", "warmup_steps", "optimizer", "hard_cut_string", "train_only_after"]
|
||||
|
||||
|
||||
def create_train_interface():
|
||||
@ -96,6 +97,7 @@ def create_train_interface():
|
||||
lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers. This can help reduce overfitting. Most users should leave at default.')
|
||||
warmup_steps = gr.Number(label='Warmup Steps', value=100, info='For this many steps at the start, the learning rate will be lower than normal. This helps the trainer prepare the model and precompute statistics to improve the quality of training after the start.')
|
||||
optimizer = gr.Dropdown(label='Optimizer', value='adamw_torch', choices=['adamw_hf', 'adamw_torch', 'adamw_torch_fused', 'adamw_torch_xla', 'adamw_apex_fused', 'adafactor', 'adamw_bnb_8bit', 'adamw_anyprecision', 'sgd', 'adagrad'], info='Different optimizer implementation options, for advanced users. Effects of different options are not well documented yet.')
|
||||
train_only_after = gr.Textbox(label='Train Only After', value='', info='Only consider text *after* this string in any given chunk for training. For Alpaca datasets, use "### Response:" to only train the response and ignore the input.')
|
||||
|
||||
with gr.Row():
|
||||
higher_rank_limit = gr.Checkbox(label='Enable higher ranks', value=False, info='If checked, changes Rank/Alpha slider above to go much higher. This will not work without a datacenter-class GPU.')
|
||||
@ -127,7 +129,7 @@ def create_train_interface():
|
||||
save_comments = gr.Button('Save comments')
|
||||
|
||||
# Training events
|
||||
all_params = [lora_name, always_override, save_steps, micro_batch_size, batch_size, epochs, learning_rate, lr_scheduler_type, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, eval_steps, raw_text_file, overlap_len, newline_favor_len, higher_rank_limit, warmup_steps, optimizer, hard_cut_string]
|
||||
all_params = [lora_name, always_override, save_steps, micro_batch_size, batch_size, epochs, learning_rate, lr_scheduler_type, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, eval_steps, raw_text_file, overlap_len, newline_favor_len, higher_rank_limit, warmup_steps, optimizer, hard_cut_string, train_only_after]
|
||||
copy_from.change(do_copy_params, [copy_from] + all_params, all_params)
|
||||
start_button.click(do_train, all_params, output)
|
||||
stop_button.click(do_interrupt, None, None, queue=False)
|
||||
@ -190,7 +192,7 @@ def clean_path(base_path: str, path: str):
|
||||
return f'{Path(base_path).absolute()}/{path}'
|
||||
|
||||
|
||||
def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str):
|
||||
def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str):
|
||||
|
||||
if shared.args.monkey_patch:
|
||||
from monkeypatch.peft_tuners_lora_monkey_patch import \
|
||||
@ -245,11 +247,38 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
|
||||
shared.tokenizer.pad_token_id = 0
|
||||
shared.tokenizer.padding_side = "left"
|
||||
|
||||
def encode(text, add_bos_token):
|
||||
result = shared.tokenizer.encode(text, truncation=True, max_length=cutoff_len)
|
||||
if not add_bos_token and result[0] == shared.tokenizer.bos_token_id:
|
||||
result = result[1:]
|
||||
return result
|
||||
|
||||
def tokenize(prompt):
|
||||
result = shared.tokenizer(prompt, truncation=True, max_length=cutoff_len + 1, padding="max_length")
|
||||
|
||||
if train_only_after == '' or train_only_after not in prompt:
|
||||
input_ids = encode(prompt, True)
|
||||
input_ids = [shared.tokenizer.pad_token_id] * (cutoff_len - len(input_ids)) + input_ids
|
||||
labels = [1] * len(input_ids)
|
||||
|
||||
else:
|
||||
ind = prompt.index(train_only_after) + len(train_only_after)
|
||||
before_tokens = encode(prompt[:ind], False)
|
||||
after_tokens = encode(prompt[ind:], False)
|
||||
|
||||
full_length = len(after_tokens) + len(before_tokens)
|
||||
if full_length > cutoff_len:
|
||||
after_tokens = after_tokens[:cutoff_len - len(before_tokens)]
|
||||
else:
|
||||
before_tokens = [shared.tokenizer.pad_token_id] * (cutoff_len - full_length) + before_tokens
|
||||
|
||||
input_ids = before_tokens + after_tokens
|
||||
labels = [-100] * len(before_tokens) + [1] * len(after_tokens)
|
||||
|
||||
input_ids = torch.tensor(input_ids)
|
||||
return {
|
||||
"input_ids": result["input_ids"][:-1],
|
||||
"attention_mask": result["attention_mask"][:-1],
|
||||
"input_ids": input_ids,
|
||||
"labels": labels,
|
||||
"attention_mask": input_ids.ne(shared.tokenizer.pad_token_id),
|
||||
}
|
||||
|
||||
# == Prep the dataset, format, etc ==
|
||||
@ -314,13 +343,13 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
|
||||
|
||||
logger.info("Loading JSON datasets...")
|
||||
data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
|
||||
train_data = data['train'].map(generate_and_tokenize_prompt)
|
||||
train_data = data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))
|
||||
|
||||
if eval_dataset == 'None':
|
||||
eval_data = None
|
||||
else:
|
||||
eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
|
||||
eval_data = eval_data['train'].map(generate_and_tokenize_prompt)
|
||||
eval_data = eval_data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))
|
||||
|
||||
# == Start prepping the model itself ==
|
||||
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
|
||||
|
Loading…
Reference in New Issue
Block a user