Merge pull request #5132 from oobabooga/dev

Merge dev branch
This commit is contained in:
oobabooga 2023-12-31 02:32:25 -03:00 committed by GitHub
commit 3e3a66e721
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
29 changed files with 82 additions and 1074 deletions

1
.gitignore vendored
View File

@ -30,6 +30,7 @@
venv venv
.envrc .envrc
.direnv .direnv
.vs
.vscode .vscode
*.bak *.bak
*.ipynb *.ipynb

View File

@ -11,7 +11,7 @@ Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.
## Features ## Features
* 3 interface modes: default (two columns), notebook, and chat. * 3 interface modes: default (two columns), notebook, and chat.
* Multiple model backends: [Transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp) (through [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)), [ExLlama](https://github.com/turboderp/exllama), [ExLlamaV2](https://github.com/turboderp/exllamav2), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [CTransformers](https://github.com/marella/ctransformers), [QuIP#](https://github.com/Cornell-RelaxML/quip-sharp). * Multiple model backends: [Transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp) (through [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)), [ExLlamaV2](https://github.com/turboderp/exllamav2), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [CTransformers](https://github.com/marella/ctransformers), [QuIP#](https://github.com/Cornell-RelaxML/quip-sharp).
* Dropdown menu for quickly switching between different models. * Dropdown menu for quickly switching between different models.
* Large number of extensions (built-in and user-contributed), including Coqui TTS for realistic voice outputs, Whisper STT for voice inputs, translation, [multimodal pipelines](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal), vector databases, Stable Diffusion integration, and a lot more. See [the wiki](https://github.com/oobabooga/text-generation-webui/wiki/07-%E2%80%90-Extensions) and [the extensions directory](https://github.com/oobabooga/text-generation-webui-extensions) for details. * Large number of extensions (built-in and user-contributed), including Coqui TTS for realistic voice outputs, Whisper STT for voice inputs, translation, [multimodal pipelines](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal), vector databases, Stable Diffusion integration, and a lot more. See [the wiki](https://github.com/oobabooga/text-generation-webui/wiki/07-%E2%80%90-Extensions) and [the extensions directory](https://github.com/oobabooga/text-generation-webui-extensions) for details.
* [Chat with custom characters](https://github.com/oobabooga/text-generation-webui/wiki/03-%E2%80%90-Parameters-Tab#character). * [Chat with custom characters](https://github.com/oobabooga/text-generation-webui/wiki/03-%E2%80%90-Parameters-Tab#character).
@ -140,13 +140,6 @@ Then browse to
3) Manually install AutoGPTQ: [Installation](https://github.com/PanQiWei/AutoGPTQ#install-from-source). 3) Manually install AutoGPTQ: [Installation](https://github.com/PanQiWei/AutoGPTQ#install-from-source).
* Perform the from-source installation - there are no prebuilt ROCm packages for Windows. * Perform the from-source installation - there are no prebuilt ROCm packages for Windows.
4) Manually install [ExLlama](https://github.com/turboderp/exllama) by simply cloning it into the `repositories` folder (it will be automatically compiled at runtime after that):
```sh
cd text-generation-webui
git clone https://github.com/turboderp/exllama repositories/exllama
```
##### Older NVIDIA GPUs ##### Older NVIDIA GPUs
1) For Kepler GPUs and older, you will need to install CUDA 11.8 instead of 12: 1) For Kepler GPUs and older, you will need to install CUDA 11.8 instead of 12:
@ -216,7 +209,7 @@ List of command-line flags
| Flag | Description | | Flag | Description |
|--------------------------------------------|-------------| |--------------------------------------------|-------------|
| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlama_HF, ExLlamav2_HF, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ExLlama, ExLlamav2, ctransformers, QuIP#. | | `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlamav2_HF, ExLlamav2, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ctransformers, QuIP#. |
#### Accelerate/transformers #### Accelerate/transformers
@ -231,8 +224,6 @@ List of command-line flags
| `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes). | | `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes). |
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | | `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
| `--no-cache` | Set `use_cache` to `False` while generating text. This reduces VRAM usage slightly, but it comes at a performance cost. | | `--no-cache` | Set `use_cache` to `False` while generating text. This reduces VRAM usage slightly, but it comes at a performance cost. |
| `--xformers` | Use xformer's memory efficient attention. This is really old and probably doesn't do anything. |
| `--sdp-attention` | Use PyTorch 2.0's SDP attention. Same as above. |
| `--trust-remote-code` | Set `trust_remote_code=True` while loading the model. Necessary for some models. | | `--trust-remote-code` | Set `trust_remote_code=True` while loading the model. Necessary for some models. |
| `--no_use_fast` | Set use_fast=False while loading the tokenizer (it's True by default). Use this if you have any problems related to use_fast. | | `--no_use_fast` | Set use_fast=False while loading the tokenizer (it's True by default). Use this if you have any problems related to use_fast. |
| `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. | | `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. |
@ -267,13 +258,13 @@ List of command-line flags
| `--no_offload_kqv` | Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance. | | `--no_offload_kqv` | Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance. |
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. | | `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
#### ExLlama #### ExLlamav2
| Flag | Description | | Flag | Description |
|------------------|-------------| |------------------|-------------|
|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7. | |`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7. |
|`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. | |`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. |
|`--cfg-cache` | ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. | |`--cfg-cache` | ExLlamav2_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader. |
|`--no_flash_attn` | Force flash-attention to not be used. | |`--no_flash_attn` | Force flash-attention to not be used. |
|`--cache_8bit` | Use 8-bit cache to save VRAM. | |`--cache_8bit` | Use 8-bit cache to save VRAM. |
|`--num_experts_per_token NUM_EXPERTS_PER_TOKEN` | Number of experts to use for generation. Applies to MoE models like Mixtral. | |`--num_experts_per_token NUM_EXPERTS_PER_TOKEN` | Number of experts to use for generation. Applies to MoE models like Mixtral. |
@ -321,14 +312,7 @@ List of command-line flags
| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. | | `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. |
| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. | | `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. |
#### RWKV #### RoPE (for llama.cpp, ExLlamaV2, and transformers)
| Flag | Description |
|---------------------------------|-------------|
| `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". |
| `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. |
#### RoPE (for llama.cpp, ExLlama, ExLlamaV2, and transformers)
| Flag | Description | | Flag | Description |
|------------------|-------------| |------------------|-------------|

View File

@ -2,7 +2,7 @@
background: var(--block-background-fill); background: var(--block-background-fill);
padding: 24px 19px; padding: 24px 19px;
padding-right: 19px !important; padding-right: 19px !important;
padding-top: 0px; padding-top: 0;
border: 1px solid var(--block-border-color); border: 1px solid var(--block-border-color);
} }
@ -62,7 +62,6 @@
.gradio-container .chat .user-message { .gradio-container .chat .user-message {
padding: 20px; padding: 20px;
background-color: var(--color-accent-soft); background-color: var(--color-accent-soft);
border-radius: 20px;
margin-bottom: 12px !important; margin-bottom: 12px !important;
margin-left: 16px; margin-left: 16px;
border-radius: 22px; border-radius: 22px;

View File

@ -92,7 +92,7 @@ div.svelte-15lo0d8 > *, div.svelte-15lo0d8 > .form > * {
.header_bar { .header_bar {
background-color: #f7f7f7; background-color: #f7f7f7;
box-shadow: 0 2px 3px rgba(22 22 22 / 35%); box-shadow: 0 2px 3px rgba(22 22 22 / 35%);
margin-bottom: 0px; margin-bottom: 0;
overflow-x: scroll; overflow-x: scroll;
margin-left: calc(-1 * var(--size-4)); margin-left: calc(-1 * var(--size-4));
margin-right: calc(-1 * var(--size-4)); margin-right: calc(-1 * var(--size-4));
@ -303,7 +303,7 @@ div.svelte-362y77>*, div.svelte-362y77>.form>* {
} }
#chat-tab { #chat-tab {
padding-top: 0px; padding-top: 0;
} }
#chat-tab button#Generate, #chat-tab button#stop { #chat-tab button#Generate, #chat-tab button#stop {

View File

@ -32,13 +32,14 @@ Options:
* **use_flash_attention_2**: Set use_flash_attention_2=True while loading the model. Possibly useful for training. * **use_flash_attention_2**: Set use_flash_attention_2=True while loading the model. Possibly useful for training.
* **disable_exllama**: Only applies when you are loading a GPTQ model through the transformers loader. It needs to be checked if you intend to train LoRAs with the model. * **disable_exllama**: Only applies when you are loading a GPTQ model through the transformers loader. It needs to be checked if you intend to train LoRAs with the model.
### ExLlama_HF ### ExLlamav2_HF
Loads: GPTQ models. They usually have GPTQ in the model name, or alternatively something like "-4bit-128g" in the name. Loads: GPTQ and EXL2 models. EXL2 models usually have "EXL2" in the model name, while GPTQ models usually have GPTQ in the model name, or alternatively something like "-4bit-128g" in the name.
Example: https://huggingface.co/TheBloke/Llama-2-13B-chat-GPTQ Examples:
ExLlama_HF is the v1 of ExLlama (https://github.com/turboderp/exllama) connected to the transformers library for sampling, tokenizing, and detokenizing. It is very fast and memory-efficient. * https://huggingface.co/turboderp/Llama2-70B-exl2
* https://huggingface.co/TheBloke/Llama-2-13B-chat-GPTQ
* **gpu-split**: If you have multiple GPUs, the amount of memory to allocate per GPU should be set in this field. Make sure to set a lower value for the first GPU, as that's where the cache is allocated. * **gpu-split**: If you have multiple GPUs, the amount of memory to allocate per GPU should be set in this field. Make sure to set a lower value for the first GPU, as that's where the cache is allocated.
* **max_seq_len**: The maximum sequence length for the model. In ExLlama, the cache is preallocated, so the higher this value, the higher the VRAM. It is automatically set to the maximum sequence length for the model based on its metadata, but you may need to lower this value be able to fit the model into your GPU. After loading the model, the "Truncate the prompt up to this length" parameter under "Parameters" > "Generation" is automatically set to your chosen "max_seq_len" so that you don't have to set the same thing twice. * **max_seq_len**: The maximum sequence length for the model. In ExLlama, the cache is preallocated, so the higher this value, the higher the VRAM. It is automatically set to the maximum sequence length for the model based on its metadata, but you may need to lower this value be able to fit the model into your GPU. After loading the model, the "Truncate the prompt up to this length" parameter under "Parameters" > "Generation" is automatically set to your chosen "max_seq_len" so that you don't have to set the same thing twice.
@ -46,18 +47,6 @@ ExLlama_HF is the v1 of ExLlama (https://github.com/turboderp/exllama) connected
* **no_flash_attn**: Disables flash attention. Otherwise, it is automatically used as long as the library is installed. * **no_flash_attn**: Disables flash attention. Otherwise, it is automatically used as long as the library is installed.
* **cache_8bit**: Create a 8-bit precision cache instead of a 16-bit one. This saves VRAM but increases perplexity (I don't know by how much). * **cache_8bit**: Create a 8-bit precision cache instead of a 16-bit one. This saves VRAM but increases perplexity (I don't know by how much).
### ExLlamav2_HF
Loads: GPTQ and EXL2 models. EXL2 models usually have "EXL2" in the model name.
Example: https://huggingface.co/turboderp/Llama2-70B-exl2
The parameters are the same as in ExLlama_HF.
### ExLlama
The same as ExLlama_HF but using the internal samplers of ExLlama instead of the ones in the Transformers library.
### ExLlamav2 ### ExLlamav2
The same as ExLlamav2_HF but using the internal samplers of ExLlamav2 instead of the ones in the Transformers library. The same as ExLlamav2_HF but using the internal samplers of ExLlamav2 instead of the ones in the Transformers library.

View File

@ -3,9 +3,7 @@
| Loader | Loading 1 LoRA | Loading 2 or more LoRAs | Training LoRAs | Multimodal extension | Perplexity evaluation | | Loader | Loading 1 LoRA | Loading 2 or more LoRAs | Training LoRAs | Multimodal extension | Perplexity evaluation |
|----------------|----------------|-------------------------|----------------|----------------------|-----------------------| |----------------|----------------|-------------------------|----------------|----------------------|-----------------------|
| Transformers | ✅ | ✅*** | ✅* | ✅ | ✅ | | Transformers | ✅ | ✅*** | ✅* | ✅ | ✅ |
| ExLlama_HF | ✅ | ❌ | ❌ | ❌ | ✅ |
| ExLlamav2_HF | ✅ | ✅ | ❌ | ❌ | ✅ | | ExLlamav2_HF | ✅ | ✅ | ❌ | ❌ | ✅ |
| ExLlama | ✅ | ❌ | ❌ | ❌ | use ExLlama_HF |
| ExLlamav2 | ✅ | ✅ | ❌ | ❌ | use ExLlamav2_HF | | ExLlamav2 | ✅ | ✅ | ❌ | ❌ | use ExLlamav2_HF |
| AutoGPTQ | ✅ | ❌ | ❌ | ✅ | ✅ | | AutoGPTQ | ✅ | ❌ | ❌ | ✅ | ✅ |
| GPTQ-for-LLaMa | ✅** | ✅*** | ✅ | ✅ | ✅ | | GPTQ-for-LLaMa | ✅** | ✅*** | ✅ | ✅ | ✅ |

View File

@ -1,14 +1,14 @@
""" """
This module is responsible for modifying the chat prompt and history. This module is responsible for modifying the chat prompt and history.
""" """
import json
import re import re
import extensions.superboogav2.parameters as parameters import extensions.superboogav2.parameters as parameters
from modules import chat from modules import chat, shared
from modules.text_generation import get_encoded_length from modules.text_generation import get_encoded_length
from modules.logging_colors import logger from modules.logging_colors import logger
from modules.chat import load_character_memoized
from extensions.superboogav2.utils import create_context_text, create_metadata_source from extensions.superboogav2.utils import create_context_text, create_metadata_source
from .data_processor import process_and_add_to_collector from .data_processor import process_and_add_to_collector
@ -17,14 +17,6 @@ from .chromadb import ChromaCollector
CHAT_METADATA = create_metadata_source('automatic-chat-insert') CHAT_METADATA = create_metadata_source('automatic-chat-insert')
INSTRUCT_MODE = 'instruct'
CHAT_INSTRUCT_MODE = 'chat-instruct'
def _is_instruct_mode(state: dict):
mode = state.get('mode')
return mode == INSTRUCT_MODE or mode == CHAT_INSTRUCT_MODE
def _remove_tag_if_necessary(user_input: str): def _remove_tag_if_necessary(user_input: str):
if not parameters.get_is_manual(): if not parameters.get_is_manual():
@ -51,17 +43,11 @@ def _format_single_exchange(name, text):
def _get_names(state: dict): def _get_names(state: dict):
if _is_instruct_mode(state): default_char = shared.settings.get('character', "Assistant")
user_name = state['name1_instruct'] default_user = shared.settings.get('name1', "You")
bot_name = state['name2_instruct'] character = state.get('character', default_char)
else: user_name = state.get('name1', default_user)
user_name = state['name1'] user_name, bot_name, _, _, _ = load_character_memoized(character, user_name, '')
bot_name = state['name2']
if not user_name:
user_name = 'User'
if not bot_name:
bot_name = 'Assistant'
return user_name, bot_name return user_name, bot_name

View File

@ -16,9 +16,9 @@ def _remove_special_tokens(string):
return re.sub(pattern, '', string) return re.sub(pattern, '', string)
def input_modifier_internal(string, collector): def input_modifier_internal(string, collector, is_chat):
# Sanity check. # Sanity check.
if shared.is_chat(): if is_chat:
return string return string
# Find the user input # Find the user input

View File

@ -167,8 +167,8 @@ def custom_generate_chat_prompt(user_input, state, **kwargs):
return custom_generate_chat_prompt_internal(user_input, state, collector, **kwargs) return custom_generate_chat_prompt_internal(user_input, state, collector, **kwargs)
def input_modifier(string): def input_modifier(string, state, is_chat=False):
return input_modifier_internal(string, collector) return input_modifier_internal(string, collector, is_chat)
def ui(): def ui():

View File

@ -178,11 +178,11 @@ for(i = 0; i < noBackgroundelements.length; i++) {
noBackgroundelements[i].parentNode.parentNode.parentNode.style.alignItems = "center"; noBackgroundelements[i].parentNode.parentNode.parentNode.style.alignItems = "center";
} }
const slimDropdownElements = document.querySelectorAll('.slim-dropdown'); const slimDropdownElements = document.querySelectorAll(".slim-dropdown");
for (i = 0; i < slimDropdownElements.length; i++) { for (i = 0; i < slimDropdownElements.length; i++) {
const parentNode = slimDropdownElements[i].parentNode; const parentNode = slimDropdownElements[i].parentNode;
parentNode.style.background = 'transparent'; parentNode.style.background = "transparent";
parentNode.style.border = '0'; parentNode.style.border = "0";
} }
//------------------------------------------------ //------------------------------------------------
@ -313,7 +313,7 @@ function addBigPicture() {
} }
function deleteBigPicture() { function deleteBigPicture() {
var bigProfilePictures = document.querySelectorAll('.bigProfilePicture'); var bigProfilePictures = document.querySelectorAll(".bigProfilePicture");
bigProfilePictures.forEach(function (element) { bigProfilePictures.forEach(function (element) {
element.parentNode.removeChild(element); element.parentNode.removeChild(element);
}); });
@ -337,25 +337,27 @@ let currentChatInputHeight = 0;
function updateCssProperties() { function updateCssProperties() {
// Set the height of the chat area // Set the height of the chat area
const chatContainer = document.getElementById('chat').parentNode.parentNode.parentNode; const chatContainer = document.getElementById("chat").parentNode.parentNode.parentNode;
const chatInputHeight = document.querySelector('#chat-input textarea').clientHeight; const chatInputHeight = document.querySelector("#chat-input textarea").clientHeight;
if (chatContainer.clientHeight > 0) {
const newChatHeight = `${chatContainer.clientHeight - chatInputHeight + 40}px`; const newChatHeight = `${chatContainer.clientHeight - chatInputHeight + 40}px`;
document.documentElement.style.setProperty('--chat-height', newChatHeight); document.documentElement.style.setProperty("--chat-height", newChatHeight);
document.documentElement.style.setProperty('--input-delta', `${chatInputHeight - 40}px`); document.documentElement.style.setProperty("--input-delta", `${chatInputHeight - 40}px`);
// Set the position offset of the chat input box // Set the position offset of the chat input box
const header = document.querySelector('.header_bar'); const header = document.querySelector(".header_bar");
const headerHeight = `${header.clientHeight}px`; const headerHeight = `${header.clientHeight}px`;
document.documentElement.style.setProperty('--header-height', headerHeight); document.documentElement.style.setProperty("--header-height", headerHeight);
// Offset the scroll position of the chat area // Offset the scroll position of the chat area
if (chatInputHeight !== currentChatInputHeight) { if (chatInputHeight !== currentChatInputHeight) {
chatContainer.scrollTop += chatInputHeight > currentChatInputHeight ? chatInputHeight : -chatInputHeight; chatContainer.scrollTop += chatInputHeight > currentChatInputHeight ? chatInputHeight : -chatInputHeight;
currentChatInputHeight = chatInputHeight; currentChatInputHeight = chatInputHeight;
} }
}
} }
new ResizeObserver(updateCssProperties) new ResizeObserver(updateCssProperties)
.observe(document.querySelector('#chat-input textarea')); .observe(document.querySelector("#chat-input textarea"));
window.addEventListener('resize', updateCssProperties); window.addEventListener("resize", updateCssProperties);

View File

@ -12,9 +12,9 @@ function toggle_controls(value) {
document.getElementById("chat-col").classList.remove("bigchat"); document.getElementById("chat-col").classList.remove("bigchat");
document.getElementById("chat-tab").style.paddingBottom = ""; document.getElementById("chat-tab").style.paddingBottom = "";
let gallery_element = document.getElementById('gallery-extension'); let gallery_element = document.getElementById("gallery-extension");
if (gallery_element) { if (gallery_element) {
gallery_element.style.display = 'block'; gallery_element.style.display = "block";
} }
} else { } else {

View File

@ -1,5 +1,5 @@
function updateBigPicture() { function updateBigPicture() {
var existingElement = document.querySelector('.bigProfilePicture'); var existingElement = document.querySelector(".bigProfilePicture");
if (existingElement) { if (existingElement) {
var timestamp = new Date().getTime(); var timestamp = new Date().getTime();
existingElement.src = "/file/cache/pfp_character.png?time=" + timestamp; existingElement.src = "/file/cache/pfp_character.png?time=" + timestamp;

View File

@ -12,8 +12,6 @@ from modules.models import reload_model
def add_lora_to_model(lora_names): def add_lora_to_model(lora_names):
if 'GPTQForCausalLM' in shared.model.__class__.__name__ or shared.args.loader == 'AutoGPTQ': if 'GPTQForCausalLM' in shared.model.__class__.__name__ or shared.args.loader == 'AutoGPTQ':
add_lora_autogptq(lora_names) add_lora_autogptq(lora_names)
elif shared.model.__class__.__name__ in ['ExllamaModel', 'ExllamaHF'] or shared.args.loader == 'ExLlama':
add_lora_exllama(lora_names)
elif shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav2HF'] or shared.args.loader == ['ExLlamav2', 'ExLlamav2_HF']: elif shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav2HF'] or shared.args.loader == ['ExLlamav2', 'ExLlamav2_HF']:
add_lora_exllamav2(lora_names) add_lora_exllamav2(lora_names)
else: else:
@ -28,48 +26,6 @@ def get_lora_path(lora_name):
return Path(f"{shared.args.lora_dir}/{lora_name}") return Path(f"{shared.args.lora_dir}/{lora_name}")
def add_lora_exllama(lora_names):
try:
from exllama.lora import ExLlamaLora
except:
try:
from repositories.exllama.lora import ExLlamaLora
except:
logger.error("Could not find the file repositories/exllama/lora.py. Make sure that exllama is cloned inside repositories/ and is up to date.")
return
if len(lora_names) == 0:
if shared.model.__class__.__name__ == 'ExllamaModel':
shared.model.generator.lora = None
else:
shared.model.lora = None
shared.lora_names = []
return
else:
if len(lora_names) > 1:
logger.warning('ExLlama can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.')
lora_path = get_lora_path(lora_names[0])
lora_config_path = lora_path / "adapter_config.json"
for file_name in ["adapter_model.safetensors", "adapter_model.bin"]:
file_path = lora_path / file_name
if file_path.is_file():
lora_adapter_path = file_path
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
if shared.model.__class__.__name__ == 'ExllamaModel':
lora = ExLlamaLora(shared.model.model, str(lora_config_path), str(lora_adapter_path))
shared.model.generator.lora = lora
else:
lora = ExLlamaLora(shared.model.ex_model, str(lora_config_path), str(lora_adapter_path))
shared.model.lora = lora
shared.lora_names = [lora_names[0]]
return
def add_lora_exllamav2(lora_names): def add_lora_exllamav2(lora_names):
from exllamav2 import ExLlamaV2Lora from exllamav2 import ExLlamaV2Lora

View File

@ -1,154 +0,0 @@
'''
This loader is not currently maintained as RWKV can now be loaded
through the transformers library.
'''
import copy
import os
from pathlib import Path
import numpy as np
from tokenizers import Tokenizer
from transformers import is_torch_xpu_available
import modules.shared as shared
from modules.callbacks import Iteratorize
np.set_printoptions(precision=4, suppress=True, linewidth=200)
os.environ['RWKV_JIT_ON'] = '1'
os.environ["RWKV_CUDA_ON"] = '1' if shared.args.rwkv_cuda_on else '0' # use CUDA kernel for seq mode (much faster)
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
class RWKVModel:
def __init__(self):
pass
@classmethod
def from_pretrained(self, path, dtype="bf16" if is_torch_xpu_available() else "fp16", device="xpu" if is_torch_xpu_available() else "cuda"):
tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
if shared.args.rwkv_strategy is None:
model = RWKV(model=str(path), strategy=f'{device} {dtype}')
else:
model = RWKV(model=str(path), strategy=shared.args.rwkv_strategy)
pipeline = PIPELINE(model, str(tokenizer_path))
result = self()
result.pipeline = pipeline
result.model = model
result.cached_context = ""
result.cached_model_state = None
result.cached_output_logits = None
return result
def generate(self, prompt, state, callback=None):
args = PIPELINE_ARGS(
temperature=state['temperature'],
top_p=state['top_p'],
top_k=state['top_k'],
alpha_frequency=0.1, # Frequency Penalty (as in GPT-3)
alpha_presence=0.1, # Presence Penalty (as in GPT-3)
token_ban=[0], # ban the generation of some tokens
token_stop=[]
)
if self.cached_context != "":
if prompt.startswith(self.cached_context):
prompt = prompt[len(self.cached_context):]
else:
self.cached_context = ""
self.cached_model_state = None
self.cached_output_logits = None
# out = self.pipeline.generate(prompt, token_count=state['max_new_tokens'], args=args, callback=callback)
out = self.generate_from_cached_state(prompt, token_count=state['max_new_tokens'], args=args, callback=callback)
return out
def generate_with_streaming(self, *args, **kwargs):
with Iteratorize(self.generate, args, kwargs, callback=None) as generator:
reply = ''
for token in generator:
reply += token
yield reply
# Similar to the PIPELINE.generate, but lets us maintain the cached_model_state
def generate_from_cached_state(self, ctx="", token_count=20, args=None, callback=None):
all_tokens = []
out_str = ''
occurrence = {}
state = copy.deepcopy(self.cached_model_state) if self.cached_model_state is not None else None
# if we ended up with an empty context, just reuse the cached logits
# this can happen if a user undoes a message and then sends the exact message again
# in that case the full context ends up being the same as the cached_context, so the remaining context is empty.
if ctx == "":
out = self.cached_output_logits
token = None
for i in range(token_count):
# forward
tokens = self.pipeline.encode(ctx) if i == 0 else [token]
while len(tokens) > 0:
out, state = self.model.forward(tokens[:args.chunk_len], state)
tokens = tokens[args.chunk_len:]
if i == 0:
begin_token = len(all_tokens)
last_token_posi = begin_token
# cache the model state after scanning the context
# we don't cache the state after processing our own generated tokens because
# the output string might be post-processed arbitrarily. Therefore, what's fed into the model
# on the next round of chat might be slightly different what what it output on the previous round
if i == 0:
self.cached_context += ctx
self.cached_model_state = copy.deepcopy(state)
self.cached_output_logits = copy.deepcopy(out)
# adjust probabilities
for n in args.token_ban:
out[n] = -float('inf')
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
# sampler
token = self.pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
# output
tmp = self.pipeline.decode(all_tokens[last_token_posi:])
if '\ufffd' not in tmp: # is valid utf-8 string?
if callback:
callback(tmp)
out_str += tmp
last_token_posi = begin_token + i + 1
return out_str
class RWKVTokenizer:
def __init__(self):
pass
@classmethod
def from_pretrained(self, path):
tokenizer_path = path / "20B_tokenizer.json"
tokenizer = Tokenizer.from_file(str(tokenizer_path))
result = self()
result.tokenizer = tokenizer
return result
def encode(self, prompt):
return self.tokenizer.encode(prompt).ids
def decode(self, ids):
return self.tokenizer.decode(ids)

View File

@ -1,237 +0,0 @@
from pathlib import Path
import torch
import torch.nn.functional as F
from torch import version as torch_version
from modules import shared
from modules.logging_colors import logger
from modules.models import clear_torch_cache
from modules.text_generation import get_max_prompt_length
try:
from exllama.generator import ExLlamaGenerator
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from exllama.tokenizer import ExLlamaTokenizer
except:
logger.warning('exllama module failed to import. Will attempt to import from repositories/.')
try:
from modules.relative_imports import RelativeImport
with RelativeImport("repositories/exllama"):
from generator import ExLlamaGenerator
from model import ExLlama, ExLlamaCache, ExLlamaConfig
from tokenizer import ExLlamaTokenizer
except:
logger.error(
"Could not find repositories/exllama. Please ensure that exllama"
" (https://github.com/turboderp/exllama) is cloned inside repositories/ and is up to date."
)
raise
class ExllamaModel:
def __init__(self):
pass
@classmethod
def from_pretrained(self, path_to_model):
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model)
tokenizer_model_path = path_to_model / "tokenizer.model"
model_config_path = path_to_model / "config.json"
# Find the model checkpoint
model_path = None
for ext in ['.safetensors', '.pt', '.bin']:
found = list(path_to_model.glob(f"*{ext}"))
if len(found) > 0:
if len(found) > 1:
logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.')
model_path = found[-1]
break
config = ExLlamaConfig(str(model_config_path))
config.model_path = str(model_path)
config.max_seq_len = shared.args.max_seq_len
config.compress_pos_emb = shared.args.compress_pos_emb
if shared.args.gpu_split:
config.set_auto_map(shared.args.gpu_split)
config.gpu_peer_fix = True
if shared.args.alpha_value > 1 and shared.args.rope_freq_base == 0:
config.alpha_value = shared.args.alpha_value
config.calculate_rotary_embedding_base()
elif shared.args.rope_freq_base > 0:
config.rotary_embedding_base = shared.args.rope_freq_base
if torch_version.hip:
config.rmsnorm_no_half2 = True
config.rope_no_half2 = True
config.matmul_no_half2 = True
config.silu_no_half2 = True
model = ExLlama(config)
tokenizer = ExLlamaTokenizer(str(tokenizer_model_path))
cache = ExLlamaCache(model)
generator = ExLlamaGenerator(model, tokenizer, cache)
result = self()
result.config = config
result.model = model
result.cache = cache
result.tokenizer = tokenizer
result.generator = generator
return result, result
def encode(self, string, **kwargs):
return self.tokenizer.encode(string, max_seq_len=self.model.config.max_seq_len, add_bos=True)
def decode(self, ids, **kwargs):
if isinstance(ids, list):
ids = torch.tensor([ids])
elif isinstance(ids, torch.Tensor) and ids.numel() == 1:
ids = ids.view(1, -1)
return self.tokenizer.decode(ids)[0]
def get_logits(self, token_ids, **kwargs):
self.cache.current_seq_len = 0
if token_ids.shape[-1] > 1:
self.model.forward(token_ids[:, :-1], self.cache, input_mask=None, preprocess_only=True)
return self.model.forward(token_ids[:, -1:], self.cache, **kwargs).float().cpu()
def generate_with_streaming(self, prompt, state):
# The cache batch size must be 2 for CFG and 1 otherwise
if state['guidance_scale'] == 1:
if self.cache.batch_size == 2:
del self.cache
clear_torch_cache()
self.cache = ExLlamaCache(self.model)
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
else:
if self.cache.batch_size == 1:
del self.cache
clear_torch_cache()
self.cache = ExLlamaCache(self.model, batch_size=2)
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
self.generator.settings.temperature = state['temperature']
self.generator.settings.top_p = state['top_p']
self.generator.settings.top_k = state['top_k']
self.generator.settings.typical = state['typical_p']
self.generator.settings.token_repetition_penalty_max = state['repetition_penalty']
self.generator.settings.token_repetition_penalty_sustain = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range']
if state['ban_eos_token']:
self.generator.disallow_tokens([self.tokenizer.eos_token_id])
else:
self.generator.disallow_tokens(None)
if state['custom_token_bans']:
to_ban = [int(x) for x in state['custom_token_bans'].split(',')]
if len(to_ban) > 0:
self.generator.disallow_tokens(to_ban)
# Case 1: no CFG
if state['guidance_scale'] == 1:
self.generator.end_beam_search()
# Tokenizing the input
ids = self.generator.tokenizer.encode(prompt, max_seq_len=self.model.config.max_seq_len)
if state['add_bos_token']:
ids = torch.cat(
[torch.tensor([[self.tokenizer.bos_token_id]]).to(ids.device),
ids], dim=1
).to(torch.int64)
ids = ids[:, -get_max_prompt_length(state):]
if state['auto_max_new_tokens']:
max_new_tokens = state['truncation_length'] - ids.shape[-1]
else:
max_new_tokens = state['max_new_tokens']
self.generator.gen_begin_reuse(ids)
initial_len = self.generator.sequence[0].shape[0]
has_leading_space = False
for i in range(max_new_tokens):
token = self.generator.gen_single_token()
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith(''):
has_leading_space = True
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
if has_leading_space:
decoded_text = ' ' + decoded_text
# Check the partial unicode character
if chr(0xfffd) in decoded_text:
is_last = i == max_new_tokens - 1
is_stopping = token.item() == self.generator.tokenizer.eos_token_id or shared.stop_everything
# If we are not at the end of the generation, we skip this token
if not (is_last or is_stopping):
continue
if token.item() == self.generator.tokenizer.eos_token_id or shared.stop_everything:
break
yield decoded_text
# Case 2: CFG
# Copied from https://github.com/turboderp/exllama/blob/master/example_cfg.py
else:
alpha = state['guidance_scale']
prompts = [prompt, state['negative_prompt'] or '']
ids, mask = self.tokenizer.encode(
prompts,
return_mask=True,
max_seq_len=self.model.config.max_seq_len,
add_bos=state['add_bos_token']
)
if state['auto_max_new_tokens']:
max_new_tokens = state['truncation_length'] - ids[0].shape[-1]
else:
max_new_tokens = state['max_new_tokens']
self.generator.gen_begin(ids, mask=mask)
initial_len = self.generator.sequence[0].shape[0]
has_leading_space = False
for i in range(max_new_tokens):
logits = self.model.forward(self.generator.sequence[:, -1:], self.cache, input_mask=mask)
self.generator.apply_rep_penalty(logits)
logits = F.log_softmax(logits, dim=-1)
logits_mixed = alpha * logits[0] + (1 - alpha) * logits[1]
token, _ = self.generator.sample_current(logits_mixed)
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith(''):
has_leading_space = True
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
if has_leading_space:
decoded_text = ' ' + decoded_text
# Check the partial unicode character
if chr(0xfffd) in decoded_text:
is_last = i == max_new_tokens - 1
is_stopping = token.item() == self.tokenizer.eos_token_id or shared.stop_everything
# If we are not at the end of the generation, we skip this token
if not (is_last or is_stopping):
continue
yield decoded_text
if token.item() == self.tokenizer.eos_token_id or shared.stop_everything:
break
batch_token = token.repeat(2, 1)
self.generator.gen_accept_token(batch_token)
def generate(self, prompt, state):
output = ''
for output in self.generate_with_streaming(prompt, state):
pass
return output

View File

@ -1,174 +0,0 @@
import os
from pathlib import Path
from typing import Any, Dict, Optional, Union
import torch
from torch.nn import CrossEntropyLoss
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from modules import shared
from modules.logging_colors import logger
try:
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
except:
logger.warning('Exllama module failed to load. Will attempt to load from repositories.')
try:
from modules.relative_imports import RelativeImport
with RelativeImport("repositories/exllama"):
from model import ExLlama, ExLlamaCache, ExLlamaConfig
except:
logger.error("Could not find repositories/exllama/. Make sure that exllama is cloned inside repositories/ and is up to date.")
raise
class ExllamaHF(PreTrainedModel):
def __init__(self, config: ExLlamaConfig):
super().__init__(PretrainedConfig())
self.ex_config = config
self.ex_model = ExLlama(self.ex_config)
self.generation_config = GenerationConfig()
self.lora = None
self.ex_cache = ExLlamaCache(self.ex_model)
self.past_seq = None
if shared.args.cfg_cache:
self.ex_cache_negative = ExLlamaCache(self.ex_model)
self.past_seq_negative = None
def _validate_model_class(self):
pass
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
pass
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, **kwargs}
@property
def device(self) -> torch.device:
return torch.device(0)
def __call__(self, *args, **kwargs):
use_cache = kwargs.get('use_cache', True)
labels = kwargs.get('labels', None)
past_key_values = kwargs.get('past_key_values', None)
if len(args) > 0:
if not shared.args.cfg_cache:
logger.error("Please enable the cfg-cache option to use CFG with ExLlama_HF.")
return
input_ids = args[0]
is_negative = True
past_seq = self.past_seq_negative
ex_cache = self.ex_cache_negative
else:
input_ids = kwargs['input_ids']
is_negative = False
past_seq = self.past_seq
ex_cache = self.ex_cache
seq = input_ids[0].tolist()
if is_negative and past_key_values is not None:
seq = past_key_values + seq
seq_tensor = torch.tensor(seq)
reset = True
# Make the forward call
if labels is None:
if past_seq is not None:
min_length = min(past_seq.shape[0], seq_tensor.shape[0])
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length]))
if len(indices) > 0:
longest_prefix = indices[0].item()
else:
longest_prefix = min_length
if longest_prefix > 0:
reset = False
ex_cache.current_seq_len = longest_prefix
if len(seq_tensor) - longest_prefix > 1:
self.ex_model.forward(seq_tensor[longest_prefix:-1].view(1, -1), ex_cache, preprocess_only=True, lora=self.lora)
elif len(seq_tensor) == longest_prefix:
# Very tricky: if the prefix we are reusing *is* the input_ids, then we have to back up the cache pointer by one,
# because we feed input_ids[-1] to forward() below, but that last token is already in the cache!
ex_cache.current_seq_len -= 1
if reset:
ex_cache.current_seq_len = 0
if len(seq_tensor) > 1:
self.ex_model.forward(seq_tensor[:-1].view(1, -1), ex_cache, preprocess_only=True, lora=self.lora)
logits = self.ex_model.forward(seq_tensor[-1:].view(1, -1), ex_cache, lora=self.lora).to(input_ids.device)
else:
ex_cache.current_seq_len = 0
logits = self.ex_model.forward(seq_tensor.view(1, -1), ex_cache, last_id_only=False, lora=self.lora)
if is_negative:
self.past_seq_negative = seq_tensor
else:
self.past_seq = seq_tensor
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, logits.shape[-1])
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
if isinstance(pretrained_model_name_or_path, str):
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
config = ExLlamaConfig(pretrained_model_name_or_path / 'config.json')
# from 'oobabooga/text-generation-webui/modules/exllama.py'
weight_path = None
for ext in ['.safetensors', '.pt', '.bin']:
found = list(pretrained_model_name_or_path.glob(f"*{ext}"))
if len(found) > 0:
weight_path = found[-1]
break
assert weight_path is not None, f'could not find weight in "{pretrained_model_name_or_path}"'
config.model_path = str(weight_path)
config.max_seq_len = shared.args.max_seq_len
config.compress_pos_emb = shared.args.compress_pos_emb
if shared.args.gpu_split:
config.set_auto_map(shared.args.gpu_split)
config.gpu_peer_fix = True
if shared.args.alpha_value > 1 and shared.args.rope_freq_base == 0:
config.alpha_value = shared.args.alpha_value
config.calculate_rotary_embedding_base()
elif shared.args.rope_freq_base > 0:
config.rotary_embedding_base = shared.args.rope_freq_base
if torch.version.hip:
config.rmsnorm_no_half2 = True
config.rope_no_half2 = True
config.matmul_no_half2 = True
config.silu_no_half2 = True
# This slowes down a bit but align better with autogptq generation.
# TODO: Should give user choice to tune the exllama config
# config.fused_attn = False
# config.fused_mlp_thd = 0
return ExllamaHF(config)

View File

@ -1,171 +0,0 @@
import math
import sys
from typing import Optional, Tuple
import torch
import torch.nn as nn
import modules.shared as shared
from modules.logging_colors import logger
if shared.args.xformers:
try:
import xformers.ops
except Exception:
logger.error("xformers not found! Please install it before trying to use it.", file=sys.stderr)
def hijack_llama_attention():
import transformers.models.llama.modeling_llama
if shared.args.xformers:
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
logger.info("Replaced attention with xformers_attention")
elif shared.args.sdp_attention:
transformers.models.llama.modeling_llama.LlamaAttention.forward = sdp_attention_forward
logger.info("Replaced attention with sdp_attention")
def xformers_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# We only apply xformers optimizations if we don't need to output the whole attention matrix
if not output_attentions:
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
# We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
# input and output should be of form (bsz, q_len, num_heads, head_dim)
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=None)
else:
# input and output should be of form (bsz, q_len, num_heads, head_dim)
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=xformers.ops.LowerTriangularMask())
attn_weights = None
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value
def sdp_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# We only apply sdp attention if we don't need to output the whole attention matrix
if not output_attentions:
attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, is_causal=False)
attn_weights = None
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value

View File

@ -81,15 +81,15 @@ loaders_and_params = OrderedDict({
'trust_remote_code', 'trust_remote_code',
'no_use_fast', 'no_use_fast',
], ],
'ExLlama_HF': [ 'ExLlamav2': [
'gpu_split', 'gpu_split',
'max_seq_len', 'max_seq_len',
'no_flash_attn',
'num_experts_per_token',
'cache_8bit',
'alpha_value', 'alpha_value',
'rope_freq_base',
'compress_pos_emb', 'compress_pos_emb',
'cfg_cache', 'exllamav2_info',
'trust_remote_code',
'no_use_fast',
], ],
'AutoGPTQ': [ 'AutoGPTQ': [
'triton', 'triton',
@ -128,24 +128,6 @@ loaders_and_params = OrderedDict({
'no_use_fast', 'no_use_fast',
'gptq_for_llama_info', 'gptq_for_llama_info',
], ],
'ExLlamav2': [
'gpu_split',
'max_seq_len',
'no_flash_attn',
'num_experts_per_token',
'cache_8bit',
'alpha_value',
'compress_pos_emb',
'exllamav2_info',
],
'ExLlama': [
'gpu_split',
'max_seq_len',
'alpha_value',
'rope_freq_base',
'compress_pos_emb',
'exllama_info',
],
'ctransformers': [ 'ctransformers': [
'n_ctx', 'n_ctx',
'n_gpu_layers', 'n_gpu_layers',
@ -216,54 +198,6 @@ loaders_samplers = {
'AutoAWQ': transformers_samplers(), 'AutoAWQ': transformers_samplers(),
'QuIP#': transformers_samplers(), 'QuIP#': transformers_samplers(),
'HQQ': transformers_samplers(), 'HQQ': transformers_samplers(),
'ExLlama_HF': {
'temperature',
'temperature_last',
'top_p',
'min_p',
'top_k',
'typical_p',
'epsilon_cutoff',
'eta_cutoff',
'tfs',
'top_a',
'repetition_penalty',
'presence_penalty',
'frequency_penalty',
'repetition_penalty_range',
'encoder_repetition_penalty',
'no_repeat_ngram_size',
'min_length',
'seed',
'do_sample',
'mirostat_mode',
'mirostat_tau',
'mirostat_eta',
'grammar_file_row',
'grammar_string',
'guidance_scale',
'negative_prompt',
'ban_eos_token',
'custom_token_bans',
'add_bos_token',
'skip_special_tokens',
'auto_max_new_tokens',
},
'ExLlama': {
'temperature',
'top_p',
'top_k',
'typical_p',
'repetition_penalty',
'repetition_penalty_range',
'seed',
'guidance_scale',
'negative_prompt',
'ban_eos_token',
'add_bos_token',
'custom_token_bans',
'auto_max_new_tokens',
},
'ExLlamav2': { 'ExLlamav2': {
'temperature', 'temperature',
'top_p', 'top_p',

View File

@ -14,11 +14,10 @@ def get_next_logits(prompt, state, use_samplers, previous, top_logits=50, return
return 'Error: No model is loaded1 Select one in the Model tab.', previous return 'Error: No model is loaded1 Select one in the Model tab.', previous
is_non_hf_exllamav2 = shared.model.__class__.__name__ == 'Exllamav2Model' is_non_hf_exllamav2 = shared.model.__class__.__name__ == 'Exllamav2Model'
is_non_hf_exllamav1 = shared.model.__class__.__name__ == 'ExllamaModel'
is_non_hf_llamacpp = shared.model.__class__.__name__ == 'LlamaCppModel' is_non_hf_llamacpp = shared.model.__class__.__name__ == 'LlamaCppModel'
if use_samplers: if use_samplers:
if any([is_non_hf_exllamav2, is_non_hf_exllamav1, is_non_hf_llamacpp]): if any([is_non_hf_exllamav2, is_non_hf_llamacpp]):
logger.error("Sampler hijacking is not supported non-Huggingface loaders.") logger.error("Sampler hijacking is not supported non-Huggingface loaders.")
# sampling is all done in c for exllama, so it is really hard to hijack # sampling is all done in c for exllama, so it is really hard to hijack
# it should be possible to hijack llamacpp sampler by hijacking all their sampling methods, # it should be possible to hijack llamacpp sampler by hijacking all their sampling methods,
@ -32,7 +31,7 @@ def get_next_logits(prompt, state, use_samplers, previous, top_logits=50, return
scores = sampler_hijack.global_scores[-1] scores = sampler_hijack.global_scores[-1]
else: else:
if is_non_hf_exllamav2 or is_non_hf_exllamav1: if is_non_hf_exllamav2:
if is_torch_xpu_available(): if is_torch_xpu_available():
tokens = shared.tokenizer.encode(prompt).to("xpu:0") tokens = shared.tokenizer.encode(prompt).to("xpu:0")
else: else:
@ -51,7 +50,7 @@ def get_next_logits(prompt, state, use_samplers, previous, top_logits=50, return
probs = torch.softmax(scores, dim=-1, dtype=torch.float) probs = torch.softmax(scores, dim=-1, dtype=torch.float)
topk_values, topk_indices = torch.topk(probs, k=top_logits, largest=True, sorted=True) topk_values, topk_indices = torch.topk(probs, k=top_logits, largest=True, sorted=True)
if is_non_hf_exllamav1 or is_non_hf_llamacpp: if is_non_hf_llamacpp:
topk_indices = [i.expand((1, 1)) for i in topk_indices] topk_indices = [i.expand((1, 1)) for i in topk_indices]
if hasattr(shared.tokenizer, 'convert_ids_to_tokens'): if hasattr(shared.tokenizer, 'convert_ids_to_tokens'):

View File

@ -21,7 +21,7 @@ from transformers import (
) )
import modules.shared as shared import modules.shared as shared
from modules import RoPE, llama_attn_hijack, sampler_hijack from modules import RoPE, sampler_hijack
from modules.logging_colors import logger from modules.logging_colors import logger
from modules.models_settings import get_model_metadata from modules.models_settings import get_model_metadata
from modules.relative_imports import RelativeImport from modules.relative_imports import RelativeImport
@ -65,9 +65,6 @@ def load_model(model_name, loader=None):
'GPTQ-for-LLaMa': GPTQ_loader, 'GPTQ-for-LLaMa': GPTQ_loader,
'llama.cpp': llamacpp_loader, 'llama.cpp': llamacpp_loader,
'llamacpp_HF': llamacpp_HF_loader, 'llamacpp_HF': llamacpp_HF_loader,
'RWKV': RWKV_loader,
'ExLlama': ExLlama_loader,
'ExLlama_HF': ExLlama_HF_loader,
'ExLlamav2': ExLlamav2_loader, 'ExLlamav2': ExLlamav2_loader,
'ExLlamav2_HF': ExLlamav2_HF_loader, 'ExLlamav2_HF': ExLlamav2_HF_loader,
'ctransformers': ctransformers_loader, 'ctransformers': ctransformers_loader,
@ -97,10 +94,6 @@ def load_model(model_name, loader=None):
else: else:
tokenizer = load_tokenizer(model_name, model) tokenizer = load_tokenizer(model_name, model)
# Hijack attention with xformers
if any((shared.args.xformers, shared.args.sdp_attention)):
llama_attn_hijack.hijack_llama_attention()
shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings}) shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings})
if loader.lower().startswith('exllama'): if loader.lower().startswith('exllama'):
shared.settings['truncation_length'] = shared.args.max_seq_len shared.settings['truncation_length'] = shared.args.max_seq_len
@ -386,19 +379,6 @@ def AutoGPTQ_loader(model_name):
return modules.AutoGPTQ_loader.load_quantized(model_name) return modules.AutoGPTQ_loader.load_quantized(model_name)
def ExLlama_loader(model_name):
from modules.exllama import ExllamaModel
model, tokenizer = ExllamaModel.from_pretrained(model_name)
return model, tokenizer
def ExLlama_HF_loader(model_name):
from modules.exllama_hf import ExllamaHF
return ExllamaHF.from_pretrained(model_name)
def ExLlamav2_loader(model_name): def ExLlamav2_loader(model_name):
from modules.exllamav2 import Exllamav2Model from modules.exllamav2 import Exllamav2Model
@ -424,23 +404,6 @@ def HQQ_loader(model_name):
return model return model
def RWKV_loader(model_name):
'''
This loader is not currently maintained as RWKV can now be loaded
through the transformers library.
'''
from modules.RWKV import RWKVModel, RWKVTokenizer
model = RWKVModel.from_pretrained(
Path(f'{shared.args.model_dir}/{model_name}'),
dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16",
device="cpu" if shared.args.cpu else "xpu" if is_xpu_available() else "cuda"
)
tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir))
return model, tokenizer
def get_max_memory_dict(): def get_max_memory_dict():
max_memory = {} max_memory = {}
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'

View File

@ -35,17 +35,15 @@ def get_model_metadata(model):
path = Path(f'{shared.args.model_dir}/{model}/config.json') path = Path(f'{shared.args.model_dir}/{model}/config.json')
if path.exists(): if path.exists():
hf_metadata = json.loads(open(path, 'r').read()) hf_metadata = json.loads(open(path, 'r', encoding='utf-8').read())
else: else:
hf_metadata = None hf_metadata = None
if 'loader' not in model_settings: if 'loader' not in model_settings:
if hf_metadata is not None and 'quip_params' in hf_metadata: if hf_metadata is not None and 'quip_params' in hf_metadata:
model_settings['loader'] = 'QuIP#' loader = 'QuIP#'
else: else:
loader = infer_loader(model, model_settings) loader = infer_loader(model, model_settings)
if 'wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0:
loader = 'AutoGPTQ'
model_settings['loader'] = loader model_settings['loader'] = loader
@ -78,7 +76,7 @@ def get_model_metadata(model):
else: else:
# Transformers metadata # Transformers metadata
if hf_metadata is not None: if hf_metadata is not None:
metadata = json.loads(open(path, 'r').read()) metadata = json.loads(open(path, 'r', encoding='utf-8').read())
if 'max_position_embeddings' in metadata: if 'max_position_embeddings' in metadata:
model_settings['truncation_length'] = metadata['max_position_embeddings'] model_settings['truncation_length'] = metadata['max_position_embeddings']
model_settings['max_seq_len'] = metadata['max_position_embeddings'] model_settings['max_seq_len'] = metadata['max_position_embeddings']
@ -101,7 +99,7 @@ def get_model_metadata(model):
# Read AutoGPTQ metadata # Read AutoGPTQ metadata
path = Path(f'{shared.args.model_dir}/{model}/quantize_config.json') path = Path(f'{shared.args.model_dir}/{model}/quantize_config.json')
if path.exists(): if path.exists():
metadata = json.loads(open(path, 'r').read()) metadata = json.loads(open(path, 'r', encoding='utf-8').read())
if 'bits' in metadata: if 'bits' in metadata:
model_settings['wbits'] = metadata['bits'] model_settings['wbits'] = metadata['bits']
if 'group_size' in metadata: if 'group_size' in metadata:
@ -112,7 +110,7 @@ def get_model_metadata(model):
# Try to find the Jinja instruct template # Try to find the Jinja instruct template
path = Path(f'{shared.args.model_dir}/{model}') / 'tokenizer_config.json' path = Path(f'{shared.args.model_dir}/{model}') / 'tokenizer_config.json'
if path.exists(): if path.exists():
metadata = json.loads(open(path, 'r').read()) metadata = json.loads(open(path, 'r', encoding='utf-8').read())
if 'chat_template' in metadata: if 'chat_template' in metadata:
template = metadata['chat_template'] template = metadata['chat_template']
for k in ['eos_token', 'bos_token']: for k in ['eos_token', 'bos_token']:
@ -152,15 +150,13 @@ def infer_loader(model_name, model_settings):
if not path_to_model.exists(): if not path_to_model.exists():
loader = None loader = None
elif (path_to_model / 'quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0): elif (path_to_model / 'quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
loader = 'ExLlama_HF' loader = 'ExLlamav2_HF'
elif (path_to_model / 'quant_config.json').exists() or re.match(r'.*-awq', model_name.lower()): elif (path_to_model / 'quant_config.json').exists() or re.match(r'.*-awq', model_name.lower()):
loader = 'AutoAWQ' loader = 'AutoAWQ'
elif len(list(path_to_model.glob('*.gguf'))) > 0: elif len(list(path_to_model.glob('*.gguf'))) > 0:
loader = 'llama.cpp' loader = 'llama.cpp'
elif re.match(r'.*\.gguf', model_name.lower()): elif re.match(r'.*\.gguf', model_name.lower()):
loader = 'llama.cpp' loader = 'llama.cpp'
elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
loader = 'RWKV'
elif re.match(r'.*exl2', model_name.lower()): elif re.match(r'.*exl2', model_name.lower()):
loader = 'ExLlamav2_HF' loader = 'ExLlamav2_HF'
elif re.match(r'.*-hqq', model_name.lower()): elif re.match(r'.*-hqq', model_name.lower()):
@ -229,7 +225,7 @@ def apply_model_settings_to_state(model, state):
loader = model_settings.pop('loader') loader = model_settings.pop('loader')
# If the user is using an alternative loader for the same model type, let them keep using it # If the user is using an alternative loader for the same model type, let them keep using it
if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF', 'ExLlamav2', 'ExLlamav2_HF']) and not (loader == 'llama.cpp' and state['loader'] in ['llamacpp_HF', 'ctransformers']): if not (loader == 'ExLlamav2_HF' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlamav2', 'AutoGPTQ']) and not (loader == 'llama.cpp' and state['loader'] in ['llamacpp_HF', 'ctransformers']):
state['loader'] = loader state['loader'] = loader
for k in model_settings: for k in model_settings:

View File

@ -85,7 +85,7 @@ group.add_argument('--chat-buttons', action='store_true', help='Show buttons on
# Model loader # Model loader
group = parser.add_argument_group('Model loader') group = parser.add_argument_group('Model loader')
group.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlama_HF, ExLlamav2_HF, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ExLlama, ExLlamav2, ctransformers, QuIP#.') group.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlamav2_HF, ExLlamav2, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ctransformers, QuIP#.')
# Transformers/Accelerate # Transformers/Accelerate
group = parser.add_argument_group('Transformers/Accelerate') group = parser.add_argument_group('Transformers/Accelerate')
@ -98,8 +98,6 @@ group.add_argument('--disk-cache-dir', type=str, default='cache', help='Director
group.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).') group.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).')
group.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') group.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
group.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.') group.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.')
group.add_argument('--xformers', action='store_true', help='Use xformer\'s memory efficient attention. This is really old and probably doesn\'t do anything.')
group.add_argument('--sdp-attention', action='store_true', help='Use PyTorch 2.0\'s SDP attention. Same as above.')
group.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.') group.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.')
group.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.') group.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.')
group.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.') group.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.')
@ -133,7 +131,7 @@ group.add_argument('--cache-capacity', type=str, help='Maximum cache capacity (l
group = parser.add_argument_group('ExLlama') group = parser.add_argument_group('ExLlama')
group.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.') group.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.')
group.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.') group.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.')
group.add_argument('--cfg-cache', action='store_true', help='ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.') group.add_argument('--cfg-cache', action='store_true', help='ExLlamav2_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader.')
group.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.') group.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.')
group.add_argument('--cache_8bit', action='store_true', help='Use 8-bit cache to save VRAM.') group.add_argument('--cache_8bit', action='store_true', help='Use 8-bit cache to save VRAM.')
group.add_argument('--num_experts_per_token', type=int, default=2, help='Number of experts to use for generation. Applies to MoE models like Mixtral.') group.add_argument('--num_experts_per_token', type=int, default=2, help='Number of experts to use for generation. Applies to MoE models like Mixtral.')
@ -167,11 +165,6 @@ group.add_argument('--deepspeed', action='store_true', help='Enable the use of D
group.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.') group.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
group.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.') group.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
# RWKV
group = parser.add_argument_group('RWKV')
group.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
group.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
# RoPE # RoPE
group = parser.add_argument_group('RoPE') group = parser.add_argument_group('RoPE')
group.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.') group.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
@ -205,15 +198,7 @@ group = parser.add_argument_group('Multimodal')
group.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.') group.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.')
# Deprecated parameters # Deprecated parameters
group = parser.add_argument_group('Deprecated') # group = parser.add_argument_group('Deprecated')
group.add_argument('--notebook', action='store_true', help='DEPRECATED')
group.add_argument('--chat', action='store_true', help='DEPRECATED')
group.add_argument('--no-stream', action='store_true', help='DEPRECATED')
group.add_argument('--mul_mat_q', action='store_true', help='DEPRECATED')
group.add_argument('--api-blocking-port', type=int, default=5000, help='DEPRECATED')
group.add_argument('--api-streaming-port', type=int, default=5005, help='DEPRECATED')
group.add_argument('--llama_cpp_seed', type=int, default=0, help='DEPRECATED')
group.add_argument('--use_fast', action='store_true', help='DEPRECATED')
args = parser.parse_args() args = parser.parse_args()
args_defaults = parser.parse_args([]) args_defaults = parser.parse_args([])
@ -223,7 +208,7 @@ for arg in sys.argv[1:]:
if hasattr(args, arg): if hasattr(args, arg):
provided_arguments.append(arg) provided_arguments.append(arg)
deprecated_args = ['notebook', 'chat', 'no_stream', 'mul_mat_q', 'use_fast'] deprecated_args = []
def do_cmd_flags_warnings(): def do_cmd_flags_warnings():
@ -262,8 +247,6 @@ def fix_loader_name(name):
return 'GPTQ-for-LLaMa' return 'GPTQ-for-LLaMa'
elif name in ['exllama', 'ex-llama', 'ex_llama', 'exlama']: elif name in ['exllama', 'ex-llama', 'ex_llama', 'exlama']:
return 'ExLlama' return 'ExLlama'
elif name in ['exllama-hf', 'exllama_hf', 'exllama hf', 'ex-llama-hf', 'ex_llama_hf']:
return 'ExLlama_HF'
elif name in ['exllamav2', 'exllama-v2', 'ex_llama-v2', 'exlamav2', 'exlama-v2', 'exllama2', 'exllama-2']: elif name in ['exllamav2', 'exllama-v2', 'ex_llama-v2', 'exlamav2', 'exlama-v2', 'exllama2', 'exllama-2']:
return 'ExLlamav2' return 'ExLlamav2'
elif name in ['exllamav2-hf', 'exllamav2_hf', 'exllama-v2-hf', 'exllama_v2_hf', 'exllama-v2_hf', 'exllama2-hf', 'exllama2_hf', 'exllama-2-hf', 'exllama_2_hf', 'exllama-2_hf']: elif name in ['exllamav2-hf', 'exllamav2_hf', 'exllama-v2-hf', 'exllama_v2_hf', 'exllama-v2_hf', 'exllama2-hf', 'exllama2_hf', 'exllama-2-hf', 'exllama_2_hf', 'exllama-2_hf']:

View File

@ -44,7 +44,7 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
yield '' yield ''
return return
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel', 'Exllamav2Model', 'CtransformersModel']: if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel']:
generate_func = generate_reply_custom generate_func = generate_reply_custom
else: else:
generate_func = generate_reply_HF generate_func = generate_reply_HF
@ -118,7 +118,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
if shared.tokenizer is None: if shared.tokenizer is None:
raise ValueError('No tokenizer is loaded') raise ValueError('No tokenizer is loaded')
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'CtransformersModel', 'Exllamav2Model']: if shared.model.__class__.__name__ in ['LlamaCppModel', 'CtransformersModel', 'Exllamav2Model']:
input_ids = shared.tokenizer.encode(str(prompt)) input_ids = shared.tokenizer.encode(str(prompt))
if shared.model.__class__.__name__ not in ['Exllamav2Model']: if shared.model.__class__.__name__ not in ['Exllamav2Model']:
input_ids = np.array(input_ids).reshape(1, len(input_ids)) input_ids = np.array(input_ids).reshape(1, len(input_ids))
@ -132,7 +132,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
if truncation_length is not None: if truncation_length is not None:
input_ids = input_ids[:, -truncation_length:] input_ids = input_ids[:, -truncation_length:]
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu: if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu:
return input_ids return input_ids
elif shared.args.deepspeed: elif shared.args.deepspeed:
return input_ids.to(device=local_rank) return input_ids.to(device=local_rank)

View File

@ -96,13 +96,13 @@ def create_ui():
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None") shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None"], value=shared.args.model_type or "None") shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None"], value=shared.args.model_type or "None")
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0) shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
shared.gradio['autogptq_info'] = gr.Markdown('* ExLlama_HF is recommended over AutoGPTQ for models derived from Llama.') shared.gradio['autogptq_info'] = gr.Markdown('ExLlamav2_HF is recommended over AutoGPTQ for models derived from Llama.')
shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7') shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=0, maximum=shared.settings['truncation_length_max'], step=256, info='Context length. Try lowering this if you run out of memory while loading the model.', value=shared.args.max_seq_len) shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=0, maximum=shared.settings['truncation_length_max'], step=256, info='Context length. Try lowering this if you run out of memory while loading the model.', value=shared.args.max_seq_len)
shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=8, step=0.05, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value) shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=8, step=0.05, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value)
shared.gradio['rope_freq_base'] = gr.Slider(label='rope_freq_base', minimum=0, maximum=1000000, step=1000, info='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63)', value=shared.args.rope_freq_base) shared.gradio['rope_freq_base'] = gr.Slider(label='rope_freq_base', minimum=0, maximum=1000000, step=1000, info='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63)', value=shared.args.rope_freq_base)
shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.', value=shared.args.compress_pos_emb) shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.', value=shared.args.compress_pos_emb)
shared.gradio['quipsharp_info'] = gr.Markdown('QuIP# only works on Linux.') shared.gradio['quipsharp_info'] = gr.Markdown('QuIP# has to be installed manually at the moment.')
with gr.Column(): with gr.Column():
shared.gradio['tensorcores'] = gr.Checkbox(label="tensorcores", value=shared.args.tensorcores, info='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.') shared.gradio['tensorcores'] = gr.Checkbox(label="tensorcores", value=shared.args.tensorcores, info='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.')
@ -134,8 +134,7 @@ def create_ui():
shared.gradio['cache_8bit'] = gr.Checkbox(label="cache_8bit", value=shared.args.cache_8bit, info='Use 8-bit cache to save VRAM.') shared.gradio['cache_8bit'] = gr.Checkbox(label="cache_8bit", value=shared.args.cache_8bit, info='Use 8-bit cache to save VRAM.')
shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.') shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.')
shared.gradio['num_experts_per_token'] = gr.Number(label="Number of experts per token", value=shared.args.num_experts_per_token, info='Only applies to MoE models like Mixtral.') shared.gradio['num_experts_per_token'] = gr.Number(label="Number of experts per token", value=shared.args.num_experts_per_token, info='Only applies to MoE models like Mixtral.')
shared.gradio['gptq_for_llama_info'] = gr.Markdown('Legacy loader for compatibility with older GPUs. ExLlama_HF or AutoGPTQ are preferred for GPTQ models when supported.') shared.gradio['gptq_for_llama_info'] = gr.Markdown('Legacy loader for compatibility with older GPUs. ExLlamav2_HF or AutoGPTQ are preferred for GPTQ models when supported.')
shared.gradio['exllama_info'] = gr.Markdown("ExLlama_HF is recommended over ExLlama for better integration with extensions and more consistent sampling behavior across loaders.")
shared.gradio['exllamav2_info'] = gr.Markdown("ExLlamav2_HF is recommended over ExLlamav2 for better integration with extensions and more consistent sampling behavior across loaders.") shared.gradio['exllamav2_info'] = gr.Markdown("ExLlamav2_HF is recommended over ExLlamav2 for better integration with extensions and more consistent sampling behavior across loaders.")
shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF loads llama.cpp as a Transformers model. To use it, you need to download a tokenizer.\n\nOption 1 (recommended): place your .gguf in a subfolder of models/ along with these 4 files: special_tokens_map.json, tokenizer_config.json, tokenizer.json, tokenizer.model.\n\nOption 2: download `oobabooga/llama-tokenizer` under "Download model or LoRA". That\'s a default Llama tokenizer that will work for some (but not all) models.') shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF loads llama.cpp as a Transformers model. To use it, you need to download a tokenizer.\n\nOption 1 (recommended): place your .gguf in a subfolder of models/ along with these 4 files: special_tokens_map.json, tokenizer_config.json, tokenizer.json, tokenizer.model.\n\nOption 2: download `oobabooga/llama-tokenizer` under "Download model or LoRA". That\'s a default Llama tokenizer that will work for some (but not all) models.')

View File

@ -343,27 +343,6 @@ def update_requirements(initial_installation=False):
if not os.path.exists("repositories/"): if not os.path.exists("repositories/"):
os.mkdir("repositories") os.mkdir("repositories")
os.chdir("repositories")
# Install or update ExLlama as needed
if not os.path.exists("exllama/"):
run_cmd("git clone https://github.com/turboderp/exllama.git", environment=True)
else:
os.chdir("exllama")
run_cmd("git pull", environment=True)
os.chdir("..")
if is_linux():
# Fix JIT compile issue with ExLlama in Linux/WSL
if not os.path.exists(f"{conda_env_path}/lib64"):
run_cmd(f'ln -s "{conda_env_path}/lib" "{conda_env_path}/lib64"', environment=True)
# On some Linux distributions, g++ may not exist or be the wrong version to compile GPTQ-for-LLaMa
gxx_output = run_cmd("g++ -dumpfullversion -dumpversion", environment=True, capture_output=True)
if gxx_output.returncode != 0 or int(gxx_output.stdout.strip().split(b".")[0]) > 11:
# Install the correct version of g++
run_cmd("conda install -y -k conda-forge::gxx_linux-64=11.2.0", environment=True)
clear_cache() clear_cache()

View File

@ -66,14 +66,6 @@ https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu1
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp39-cp39-win_amd64.whl; platform_system == "Windows" and python_version == "3.9"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp38-cp38-win_amd64.whl; platform_system == "Windows" and python_version == "3.8"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp39-cp39-win_amd64.whl; platform_system == "Windows" and python_version == "3.9" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp39-cp39-win_amd64.whl; platform_system == "Windows" and python_version == "3.9"

View File

@ -46,10 +46,6 @@ https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+roc
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+rocm5.6-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+rocm5.6-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"

View File

@ -42,10 +42,6 @@ https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+roc
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+rocm5.6-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+rocm5.6-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"

View File

@ -66,14 +66,6 @@ https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu1
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp39-cp39-win_amd64.whl; platform_system == "Windows" and python_version == "3.9"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp38-cp38-win_amd64.whl; platform_system == "Windows" and python_version == "3.8"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/exllama/releases/download/0.0.18/exllama-0.0.18+cu121-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp39-cp39-win_amd64.whl; platform_system == "Windows" and python_version == "3.9" https://github.com/turboderp/exllamav2/releases/download/v0.0.11/exllamav2-0.0.11+cu121-cp39-cp39-win_amd64.whl; platform_system == "Windows" and python_version == "3.9"