mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-21 23:57:58 +01:00
Merge pull request #570 from mcmonkey4eva/add-train-lora-tab
LoRA Training Tab
This commit is contained in:
commit
46f6536fae
@ -41,7 +41,7 @@ ol li p, ul li p {
|
||||
display: inline-block;
|
||||
}
|
||||
|
||||
#main, #parameters, #chat-settings, #interface-mode, #lora {
|
||||
#main, #parameters, #chat-settings, #interface-mode, #lora, #training-tab {
|
||||
border: 0;
|
||||
}
|
||||
|
||||
|
267
modules/training.py
Normal file
267
modules/training.py
Normal file
@ -0,0 +1,267 @@
|
||||
import json
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import gradio as gr
|
||||
import torch
|
||||
import transformers
|
||||
from datasets import Dataset, load_dataset
|
||||
from peft import (LoraConfig, get_peft_model, get_peft_model_state_dict,
|
||||
prepare_model_for_int8_training)
|
||||
|
||||
from modules import shared, ui
|
||||
|
||||
WANT_INTERRUPT = False
|
||||
CURRENT_STEPS = 0
|
||||
MAX_STEPS = 0
|
||||
CURRENT_GRADIENT_ACCUM = 1
|
||||
|
||||
def get_dataset(path: str, ext: str):
|
||||
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob(f'*.{ext}'))), key=str.lower)
|
||||
|
||||
def create_train_interface():
|
||||
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
||||
lora_name = gr.Textbox(label="Name", info="The name of your new LoRA file")
|
||||
with gr.Row():
|
||||
# TODO: Implement multi-device support.
|
||||
micro_batch_size = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='Per-device batch size (NOTE: multiple devices not yet implemented). Increasing this will increase VRAM usage.')
|
||||
batch_size = gr.Slider(label='Batch Size', value=128, minimum=0, maximum=1024, step=4, info='Global batch size. The two batch sizes together determine gradient accumulation (gradientAccum = batch / microBatch). Higher gradient accum values lead to better quality training.')
|
||||
|
||||
with gr.Row():
|
||||
epochs = gr.Number(label='Epochs', value=3, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
|
||||
learning_rate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
|
||||
|
||||
# TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
|
||||
lora_rank = gr.Slider(label='LoRA Rank', value=32, minimum=0, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
|
||||
lora_alpha = gr.Slider(label='LoRA Alpha', value=64, minimum=0, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
|
||||
# TODO: Better explain what this does, in terms of real world effect especially.
|
||||
lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
|
||||
cutoff_len = gr.Slider(label='Cutoff Length', minimum=0, maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
|
||||
|
||||
with gr.Tab(label="Formatted Dataset"):
|
||||
with gr.Row():
|
||||
dataset = gr.Dropdown(choices=get_dataset('training/datasets', 'json'), value='None', label='Dataset', info='The dataset file to use for training.')
|
||||
ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'json')}, 'refresh-button')
|
||||
eval_dataset = gr.Dropdown(choices=get_dataset('training/datasets', 'json'), value='None', label='Evaluation Dataset', info='The dataset file used to evaluate the model after training.')
|
||||
ui.create_refresh_button(eval_dataset, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'json')}, 'refresh-button')
|
||||
format = gr.Dropdown(choices=get_dataset('training/formats', 'json'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.')
|
||||
ui.create_refresh_button(format, lambda : None, lambda : {'choices': get_dataset('training/formats', 'json')}, 'refresh-button')
|
||||
with gr.Tab(label="Raw Text File"):
|
||||
with gr.Row():
|
||||
raw_text_file = gr.Dropdown(choices=get_dataset('training/datasets', 'txt'), value='None', label='Text File', info='The raw text file to use for training.')
|
||||
ui.create_refresh_button(raw_text_file, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'txt')}, 'refresh-button')
|
||||
overlap_len = gr.Slider(label='Overlap Length', minimum=0,maximum=512, value=128, step=16, info='Overlap length - ie how many tokens from the prior chunk of text to include into the next chunk. (The chunks themselves will be of a size determined by Cutoff Length above). Setting overlap to exactly half the cutoff length may be ideal.')
|
||||
|
||||
with gr.Row():
|
||||
start_button = gr.Button("Start LoRA Training")
|
||||
stop_button = gr.Button("Interrupt")
|
||||
|
||||
output = gr.Markdown(value="Ready")
|
||||
start_button.click(do_train, [lora_name, micro_batch_size, batch_size, epochs, learning_rate, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, raw_text_file, overlap_len], [output])
|
||||
stop_button.click(do_interrupt, [], [], cancels=[], queue=False)
|
||||
|
||||
def do_interrupt():
|
||||
global WANT_INTERRUPT
|
||||
WANT_INTERRUPT = True
|
||||
|
||||
class Callbacks(transformers.TrainerCallback):
|
||||
def on_step_begin(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
|
||||
global CURRENT_STEPS, MAX_STEPS
|
||||
CURRENT_STEPS = state.global_step * CURRENT_GRADIENT_ACCUM
|
||||
MAX_STEPS = state.max_steps * CURRENT_GRADIENT_ACCUM
|
||||
if WANT_INTERRUPT:
|
||||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
def on_substep_end(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
|
||||
global CURRENT_STEPS
|
||||
CURRENT_STEPS += 1
|
||||
if WANT_INTERRUPT:
|
||||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
|
||||
def clean_path(base_path: str, path: str):
|
||||
""""Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
|
||||
# TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path.
|
||||
# Or swap it to a strict whitelist of [a-zA-Z_0-9]
|
||||
path = path.replace('\\', '/').replace('..', '_')
|
||||
if base_path is None:
|
||||
return path
|
||||
return f'{Path(base_path).absolute()}/{path}'
|
||||
|
||||
def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lora_rank: int,
|
||||
lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, raw_text_file: str, overlap_len: int):
|
||||
global WANT_INTERRUPT, CURRENT_STEPS, MAX_STEPS, CURRENT_GRADIENT_ACCUM
|
||||
WANT_INTERRUPT = False
|
||||
CURRENT_STEPS = 0
|
||||
MAX_STEPS = 0
|
||||
|
||||
# == Input validation / processing ==
|
||||
yield "Prepping..."
|
||||
lora_name = f"{shared.args.lora_dir}/{clean_path(None, lora_name)}"
|
||||
actual_lr = float(learning_rate)
|
||||
|
||||
if cutoff_len <= 0 or micro_batch_size <= 0 or batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0:
|
||||
yield f"Cannot input zeroes."
|
||||
return
|
||||
|
||||
gradient_accumulation_steps = batch_size // micro_batch_size
|
||||
CURRENT_GRADIENT_ACCUM = gradient_accumulation_steps
|
||||
shared.tokenizer.pad_token = 0
|
||||
shared.tokenizer.padding_side = "left"
|
||||
|
||||
def tokenize(prompt):
|
||||
result = shared.tokenizer(prompt, truncation=True, max_length=cutoff_len + 1, padding="max_length")
|
||||
return {
|
||||
"input_ids": result["input_ids"][:-1],
|
||||
"attention_mask": result["attention_mask"][:-1],
|
||||
}
|
||||
|
||||
# == Prep the dataset, format, etc ==
|
||||
if raw_text_file is not None:
|
||||
print("Loading raw text file dataset...")
|
||||
with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r') as file:
|
||||
raw_text = file.read()
|
||||
tokens = shared.tokenizer.encode(raw_text)
|
||||
del raw_text # Note: could be a gig for a large dataset, so delete redundant data as we go to be safe on RAM
|
||||
tokens = list(split_chunks(tokens, cutoff_len - overlap_len))
|
||||
for i in range(1, len(tokens)):
|
||||
tokens[i] = tokens[i - 1][-overlap_len:] + tokens[i]
|
||||
text_chunks = [shared.tokenizer.decode(x) for x in tokens]
|
||||
del tokens
|
||||
data = Dataset.from_list([tokenize(x) for x in text_chunks])
|
||||
train_data = data.shuffle()
|
||||
eval_data = None
|
||||
del text_chunks
|
||||
|
||||
else:
|
||||
with open(clean_path('training/formats', f'{format}.json'), 'r') as formatFile:
|
||||
format_data: dict[str, str] = json.load(formatFile)
|
||||
|
||||
if dataset is None:
|
||||
yield "**Missing dataset choice input, cannot continue.**"
|
||||
return
|
||||
if format is None:
|
||||
yield "**Missing format choice input, cannot continue.**"
|
||||
return
|
||||
|
||||
def generate_prompt(data_point: dict[str, str]):
|
||||
for options, data in format_data.items():
|
||||
if set(options.split(',')) == set(x[0] for x in data_point.items() if len(x[1].strip()) > 0):
|
||||
for key, val in data_point.items():
|
||||
data = data.replace(f'%{key}%', val)
|
||||
return data
|
||||
raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')
|
||||
|
||||
def generate_and_tokenize_prompt(data_point):
|
||||
prompt = generate_prompt(data_point)
|
||||
return tokenize(prompt)
|
||||
|
||||
print("Loading JSON datasets...")
|
||||
data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
|
||||
train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
|
||||
|
||||
if eval_dataset == 'None':
|
||||
eval_data = None
|
||||
else:
|
||||
eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
|
||||
eval_data = eval_data['train'].shuffle().map(generate_and_tokenize_prompt)
|
||||
|
||||
# == Start prepping the model itself ==
|
||||
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
|
||||
print("Getting model ready...")
|
||||
prepare_model_for_int8_training(shared.model)
|
||||
|
||||
print("Prepping for training...")
|
||||
config = LoraConfig(
|
||||
r=lora_rank,
|
||||
lora_alpha=lora_alpha,
|
||||
# TODO: Should target_modules be configurable?
|
||||
target_modules=[ "q_proj", "v_proj" ],
|
||||
lora_dropout=lora_dropout,
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM"
|
||||
)
|
||||
lora_model = get_peft_model(shared.model, config)
|
||||
trainer = transformers.Trainer(
|
||||
model=lora_model,
|
||||
train_dataset=train_data,
|
||||
eval_dataset=eval_data,
|
||||
args=transformers.TrainingArguments(
|
||||
per_device_train_batch_size=micro_batch_size,
|
||||
gradient_accumulation_steps=gradient_accumulation_steps,
|
||||
# TODO: Should more of these be configurable? Probably.
|
||||
warmup_steps=100,
|
||||
num_train_epochs=epochs,
|
||||
learning_rate=actual_lr,
|
||||
fp16=True,
|
||||
logging_steps=20,
|
||||
evaluation_strategy="steps" if eval_data is not None else "no",
|
||||
save_strategy="steps",
|
||||
eval_steps=200 if eval_data is not None else None,
|
||||
save_steps=200,
|
||||
output_dir=lora_name,
|
||||
save_total_limit=3,
|
||||
load_best_model_at_end=True if eval_data is not None else False,
|
||||
# TODO: Enable multi-device support
|
||||
ddp_find_unused_parameters=None
|
||||
),
|
||||
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
|
||||
callbacks=list([Callbacks()])
|
||||
)
|
||||
|
||||
lora_model.config.use_cache = False
|
||||
old_state_dict = lora_model.state_dict
|
||||
lora_model.state_dict = (
|
||||
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
|
||||
).__get__(lora_model, type(lora_model))
|
||||
|
||||
if torch.__version__ >= "2" and sys.platform != "win32":
|
||||
lora_model = torch.compile(lora_model)
|
||||
|
||||
# == Main run and monitor loop ==
|
||||
# TODO: save/load checkpoints to resume from?
|
||||
print("Starting training...")
|
||||
yield "Starting..."
|
||||
|
||||
def threadedRun():
|
||||
trainer.train()
|
||||
|
||||
thread = threading.Thread(target=threadedRun)
|
||||
thread.start()
|
||||
lastStep = 0
|
||||
startTime = time.perf_counter()
|
||||
|
||||
while thread.is_alive():
|
||||
time.sleep(0.5)
|
||||
if WANT_INTERRUPT:
|
||||
yield "Interrupting, please wait... *(Run will stop after the current training step completes.)*"
|
||||
elif CURRENT_STEPS != lastStep:
|
||||
lastStep = CURRENT_STEPS
|
||||
timeElapsed = time.perf_counter() - startTime
|
||||
if timeElapsed <= 0:
|
||||
timerInfo = ""
|
||||
totalTimeEstimate = 999
|
||||
else:
|
||||
its = CURRENT_STEPS / timeElapsed
|
||||
if its > 1:
|
||||
timerInfo = f"`{its:.2f}` it/s"
|
||||
else:
|
||||
timerInfo = f"`{1.0/its:.2f}` s/it"
|
||||
totalTimeEstimate = (1.0/its) * (MAX_STEPS)
|
||||
yield f"Running... **{CURRENT_STEPS}** / **{MAX_STEPS}** ... {timerInfo}, `{timeElapsed:.0f}`/`{totalTimeEstimate:.0f}` seconds"
|
||||
|
||||
print("Training complete, saving...")
|
||||
lora_model.save_pretrained(lora_name)
|
||||
|
||||
if WANT_INTERRUPT:
|
||||
print("Training interrupted.")
|
||||
yield f"Interrupted. Incomplete LoRA saved to `{lora_name}`"
|
||||
else:
|
||||
print("Training complete!")
|
||||
yield f"Done! LoRA saved to `{lora_name}`"
|
||||
|
||||
def split_chunks(arr, step):
|
||||
for i in range(0, len(arr), step):
|
||||
yield arr[i:i + step]
|
@ -10,4 +10,5 @@ rwkv==0.7.1
|
||||
safetensors==0.3.0
|
||||
sentencepiece
|
||||
tqdm
|
||||
datasets
|
||||
git+https://github.com/huggingface/transformers
|
||||
|
@ -9,10 +9,8 @@ from pathlib import Path
|
||||
|
||||
import gradio as gr
|
||||
|
||||
import modules.chat as chat
|
||||
import modules.extensions as extensions_module
|
||||
import modules.shared as shared
|
||||
import modules.ui as ui
|
||||
from modules import chat, shared, training, ui
|
||||
from modules.html_generator import generate_chat_html
|
||||
from modules.LoRA import add_lora_to_model
|
||||
from modules.models import load_model, load_soft_prompt
|
||||
@ -57,7 +55,7 @@ def get_available_softprompts():
|
||||
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
|
||||
|
||||
def get_available_loras():
|
||||
return ['None'] + sorted([item.name for item in list(Path('shared.args.lora_dir').glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=str.lower)
|
||||
return ['None'] + sorted([item.name for item in list(Path(shared.args.lora_dir).glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=str.lower)
|
||||
|
||||
def unload_model():
|
||||
shared.model = shared.tokenizer = None
|
||||
@ -475,6 +473,9 @@ def create_interface():
|
||||
shared.gradio['Stop'].click(stop_everything_event, [], [], queue=False, cancels=gen_events if shared.args.no_stream else None)
|
||||
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.main_js}}}")
|
||||
|
||||
with gr.Tab("Training", elem_id="training-tab"):
|
||||
training.create_train_interface()
|
||||
|
||||
with gr.Tab("Interface mode", elem_id="interface-mode"):
|
||||
modes = ["default", "notebook", "chat", "cai_chat"]
|
||||
current_mode = "default"
|
||||
|
0
training/datasets/put-trainer-datasets-here.txt
Normal file
0
training/datasets/put-trainer-datasets-here.txt
Normal file
4
training/formats/alpaca-chatbot-format.json
Normal file
4
training/formats/alpaca-chatbot-format.json
Normal file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"instruction,output": "User: %instruction%\nAssistant: %output%",
|
||||
"instruction,input,output": "User: %instruction%: %input%\nAssistant: %output%"
|
||||
}
|
4
training/formats/alpaca-format.json
Normal file
4
training/formats/alpaca-format.json
Normal file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"instruction,output": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n%instruction%\n\n### Response:\n%output%",
|
||||
"instruction,input,output": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n%instruction%\n\n### Input:\n%input%\n\n### Response:\n%output%"
|
||||
}
|
0
training/formats/put-trainer-formats-here.txt
Normal file
0
training/formats/put-trainer-formats-here.txt
Normal file
Loading…
Reference in New Issue
Block a user