Dynamic Temperature HF loader support (#5174)

---------

Co-authored-by: oobabooga <112222186+oobabooga@users.noreply.github.com>
This commit is contained in:
kalomaze 2024-01-07 07:36:26 -06:00 committed by GitHub
parent 3eca20c015
commit 48327cc5c4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 184 additions and 8 deletions

View File

@ -54,6 +54,7 @@ For more information about the parameters, the [transformers documentation](http
* **mirostat_mode**: Activates the Mirostat sampling technique. It aims to control perplexity during sampling. See the [paper](https://arxiv.org/abs/2007.14966).
* **mirostat_tau**: No idea, see the paper for details. According to the Preset Arena, 8 is a good value.
* **mirostat_eta**: No idea, see the paper for details. According to the Preset Arena, 0.1 is a good value.
* **dynatemp**: Dynamic Temperature is activated when this parameter is greater than 0. The temperature range is determined by adding and subtracting dynatemp from the current temperature.
* **temperature_last**: Makes temperature the last sampler instead of the first. With this, you can remove low probability tokens with a sampler like min_p and then use a high temperature to make the model creative without losing coherency.
* **do_sample**: When unchecked, sampling is entirely disabled, and greedy decoding is used instead (the most likely token is always picked).
* **Seed**: Set the Pytorch seed to this number. Note that some loaders do not use Pytorch (notably llama.cpp), and others are not deterministic (notably ExLlama v1 and v2). For these loaders, the seed has no effect.

View File

@ -0,0 +1,17 @@
# dynatemp_with_range
This extension makes it possible to set the minimum and maximum temperatures for dynamic temperature explicitly.
For instance, you can directly set
```
min_T = 0.1
max_T = 3
```
instead of having to convert that to
```
T = 1.55
dynatemp = 1.45
```

View File

@ -0,0 +1,50 @@
import gradio as gr
params = {
"activate": True,
"minimum_temperature": 0.1,
"maximum_temperature": 2,
}
def convert_to_dynatemp():
temperature = 0.5 * (params["minimum_temperature"] + params["maximum_temperature"])
dynatemp = params["maximum_temperature"] - temperature
return temperature, dynatemp
def state_modifier(state):
"""
Modifies the state variable, which is a dictionary containing the input
values in the UI like sliders and checkboxes.
"""
if params["activate"]:
temperature, dynatemp = convert_to_dynatemp()
state["temperature"] = temperature
state["dynatemp"] = dynatemp
return state
def generate_info():
temperature, dynatemp = convert_to_dynatemp()
return f"The combination above is equivalent to: T={temperature:.2f}, dynatemp={dynatemp:.2f}"
def ui():
activate = gr.Checkbox(value=params['activate'], label='Activate Dynamic Temperature Range', info='When checked, the default temperature/dynatemp parameters are ignored and the parameters below are used instead.')
with gr.Row():
minimum_temperature = gr.Slider(0, 5, step=0.01, label="Minimum temperature", value=params["minimum_temperature"], interactive=True)
maximum_temperature = gr.Slider(0, 5, step=0.01, label="Maximum temperature", value=params["maximum_temperature"], interactive=True)
info = gr.HTML(generate_info())
activate.change(lambda x: params.update({"activate": x}), activate, None)
minimum_temperature.change(
lambda x: params.update({"minimum_temperature": x}), minimum_temperature, None).then(
generate_info, None, info, show_progress=False)
maximum_temperature.change(
lambda x: params.update({"maximum_temperature": x}), maximum_temperature, None).then(
generate_info, None, info, show_progress=False)

View File

@ -8,6 +8,7 @@ from pydantic import BaseModel, Field
class GenerationOptions(BaseModel):
preset: str | None = Field(default=None, description="The name of a file under text-generation-webui/presets (without the .yaml extension). The sampling parameters that get overwritten by this option are the keys in the default_preset() function in modules/presets.py.")
min_p: float = 0
dynatemp: float = 0
top_k: int = 0
repetition_penalty: float = 1
repetition_penalty_range: int = 1024

View File

@ -10,6 +10,10 @@ from transformers import is_torch_xpu_available
import modules.shared as shared
class StopNowException(Exception):
pass
class _StopEverythingStoppingCriteria(transformers.StoppingCriteria):
def __init__(self):
transformers.StoppingCriteria.__init__(self)
@ -49,13 +53,13 @@ class Iteratorize:
def _callback(val):
if self.stop_now or shared.stop_everything:
raise ValueError
raise StopNowException
self.q.put(val)
def gentask():
try:
ret = self.mfunc(callback=_callback, *args, **self.kwargs)
except ValueError:
except StopNowException:
pass
except:
traceback.print_exc()

View File

@ -144,6 +144,9 @@ class LlamacppHF(PreTrainedModel):
self.model.n_tokens = longest_prefix
if len(seq_tensor) - longest_prefix > 0:
self.model.eval(seq[longest_prefix:])
else:
self.model.n_tokens -= 1
self.model.eval([seq[-1]])
if reset:
self.model.reset()

View File

@ -155,6 +155,7 @@ def transformers_samplers():
return {
'temperature',
'temperature_last',
'dynatemp',
'top_p',
'min_p',
'top_k',
@ -220,6 +221,7 @@ loaders_samplers = {
'ExLlamav2_HF': {
'temperature',
'temperature_last',
'dynatemp',
'top_p',
'min_p',
'top_k',
@ -272,6 +274,7 @@ loaders_samplers = {
'llamacpp_HF': {
'temperature',
'temperature_last',
'dynatemp',
'top_p',
'min_p',
'top_k',

View File

@ -8,7 +8,7 @@ from modules.text_generation import generate_reply
global_scores = None
def get_next_logits(prompt, state, use_samplers, previous, top_logits=50, return_dict=False):
def get_next_logits(prompt, state, use_samplers, previous, top_logits=25, return_dict=False):
if shared.model is None:
logger.error("No model is loaded! Select one in the Model tab.")
return 'Error: No model is loaded1 Select one in the Model tab.', previous

View File

@ -12,6 +12,7 @@ def default_preset():
return {
'temperature': 1,
'temperature_last': False,
'dynatemp': 0,
'top_p': 1,
'min_p': 0,
'top_k': 0,

View File

@ -10,9 +10,84 @@ from transformers.generation.logits_process import (
TemperatureLogitsWarper
)
from modules import shared
global_scores = None
class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
def __init__(self, temperature: float, dynatemp: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if not isinstance(temperature, float) or not (temperature > 0):
except_msg = (
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
"scores will be invalid."
)
if isinstance(temperature, float) and temperature == 0.0:
except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`."
raise ValueError(except_msg)
self.temperature = temperature
self.dynatemp = dynatemp
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Regular temperature
if self.dynatemp == 0:
scores = scores / self.temperature
return scores
# Dynamic temperature
else:
min_temp = max(0.0, self.temperature - self.dynatemp)
max_temp = self.temperature + self.dynatemp
exponent_val = 1.0
# Convert logits to probabilities
probs = torch.softmax(scores, dim=-1)
# Calculate entropy of the softmax probabilities
entropy = -1.0 * torch.where(probs > 0, probs * torch.log(probs), torch.zeros_like(probs)).sum()
# Guard against future possible division by zero
entropy = max(entropy, torch.tensor(1e-10)) # Ensures entropy is slightly greater than 0
# Any logits which are not -Infinity will be considered for calculating max entropy.
num_valid_tokens = torch.sum(scores > -float('inf')).item()
# Now, calculate the max entropy by using only the valid tokens' count
max_entropy = math.log(num_valid_tokens)
# Guard against future possible division by zero
max_entropy = max_entropy if max_entropy > 0.0 else 1e-10
# Normalize the entropy
normalized_entropy = entropy / max_entropy
# Map the normalized entropy to the desired temperature range using the power function
dyn_temp = min_temp + (max_temp - min_temp) * (normalized_entropy.pow(exponent_val))
# Apply the dynamically calculated temperature scaling
scores = scores / dyn_temp
# print("----------------------\nTemperature from generation_config:", self.temperature)
# print("min_temp:", min_temp)
# print("max_temp:", max_temp)
# print("Entropy:", entropy.item())
# print("Max Possible Entropy considering valid tokens only:", max_entropy)
# print("Normalized Entropy:", normalized_entropy.item())
# print("Dynamic Temperature (dyn_temp):", dyn_temp.item())
# print("----------------------")
# max_prob_token_id = torch.argmax(scores, dim=-1) # Get the token ID with the highest probability
# max_prob_token = shared.tokenizer.convert_ids_to_tokens(int(max_prob_token_id)) # Convert ID to token
# print("--- T=", float(dyn_temp), "token=", max_prob_token, "min=", min_temp, "max=", max_temp)
return scores
class MinPLogitsWarper(LogitsWarper):
def __init__(self, min_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if min_p < 0 or min_p > 1.0:
@ -205,7 +280,21 @@ class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor):
def get_logits_warper_patch(self, generation_config):
# Make sure that temperature is float and not int
if isinstance(generation_config.temperature, int):
generation_config.temperature = float(generation_config.temperature)
temperature = generation_config.temperature
if generation_config.dynatemp > 0:
# Make sure TemperatureLogitsWarper will be created by temporarily
# setting temperature to a value != 1.
generation_config.temperature = 1.1
warpers = self._get_logits_warper_old(generation_config)
for i in range(len(warpers)):
if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper':
warpers[i] = TemperatureLogitsWarperWithDynatemp(temperature, generation_config.dynatemp)
warpers_to_add = LogitsProcessorList()
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
@ -232,18 +321,18 @@ def get_logits_warper_patch(self, generation_config):
if generation_config.temperature_last:
temperature_idx = None
for i in range(len(warpers)):
if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper':
if warpers[i].__class__.__name__ in ['TemperatureLogitsWarper', 'TemperatureLogitsWarperWithDynatemp']:
temperature_idx = i
break
if temperature_idx is not None:
warpers = warpers[:temperature_idx] + warpers[temperature_idx + 1:] + [warpers[temperature_idx]]
warpers = LogitsProcessorList(warpers)
warpers.append(warpers.pop(temperature_idx))
if normalize is not None:
warpers.append(normalize)
warpers.append(SpyLogitsWarper())
warpers = LogitsProcessorList(warpers)
# for i in range(len(warpers)):
# print(warpers[i].__class__.__name__)
return warpers
@ -272,6 +361,7 @@ def get_logits_processor_patch(self, **kwargs):
def generation_config_init_patch(self, **kwargs):
self.__init___old(**kwargs)
self.min_p = kwargs.pop("min_p", 0.0)
self.dynatemp = kwargs.pop("dynatemp", 0.0)
self.tfs = kwargs.pop("tfs", 1.0)
self.top_a = kwargs.pop("top_a", 0.0)
self.mirostat_mode = kwargs.pop("mirostat_mode", 0)

View File

@ -283,7 +283,7 @@ def get_reply_from_output_ids(output_ids, state, starting_from=0):
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False):
generate_params = {}
for k in ['max_new_tokens', 'do_sample', 'temperature', 'temperature_last', 'top_p', 'min_p', 'typical_p', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'tfs', 'top_a', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'guidance_scale']:
for k in ['max_new_tokens', 'do_sample', 'temperature', 'temperature_last', 'dynatemp', 'top_p', 'min_p', 'typical_p', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'tfs', 'top_a', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'guidance_scale']:
generate_params[k] = state[k]
if state['negative_prompt'] != '':

View File

@ -115,6 +115,7 @@ def list_interface_input_elements():
'seed',
'temperature',
'temperature_last',
'dynatemp',
'top_p',
'min_p',
'top_k',

View File

@ -49,6 +49,7 @@ def create_ui(default_preset):
shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
shared.gradio['dynatemp'] = gr.Slider(0, 5, value=generate_params['dynatemp'], step=0.01, label='dynatemp')
shared.gradio['temperature_last'] = gr.Checkbox(value=generate_params['temperature_last'], label='temperature_last', info='Makes temperature the last sampler instead of the first.')
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')

View File

@ -0,0 +1,4 @@
temperature: 1.55
temperature_last: true
dynatemp: 1.45
min_p: 0.05