mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-29 10:59:32 +01:00
Training: added trainable parameters info (#2944)
This commit is contained in:
parent
847f70b694
commit
48b11f9c5b
@ -240,6 +240,21 @@ def backup_adapter(input_folder):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
print("An error occurred in backup_adapter:", str(e))
|
print("An error occurred in backup_adapter:", str(e))
|
||||||
|
|
||||||
|
def calc_trainable_parameters(model):
|
||||||
|
trainable_params = 0
|
||||||
|
all_param = 0
|
||||||
|
for _, param in model.named_parameters():
|
||||||
|
num_params = param.numel()
|
||||||
|
# if using DS Zero 3 and the weights are initialized empty
|
||||||
|
if num_params == 0 and hasattr(param, "ds_numel"):
|
||||||
|
num_params = param.ds_numel
|
||||||
|
|
||||||
|
all_param += num_params
|
||||||
|
if param.requires_grad:
|
||||||
|
trainable_params += num_params
|
||||||
|
|
||||||
|
return trainable_params,all_param
|
||||||
|
|
||||||
|
|
||||||
def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float):
|
def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float):
|
||||||
|
|
||||||
@ -431,6 +446,9 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
|
|||||||
if not always_override:
|
if not always_override:
|
||||||
backup_adapter(lora_file_path)
|
backup_adapter(lora_file_path)
|
||||||
|
|
||||||
|
# == get model trainable params
|
||||||
|
model_trainable_params, model_all_params = calc_trainable_parameters(shared.model)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
logger.info("Creating LoRA model...")
|
logger.info("Creating LoRA model...")
|
||||||
lora_model = get_peft_model(shared.model, config)
|
lora_model = get_peft_model(shared.model, config)
|
||||||
@ -540,6 +558,12 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
|
|||||||
logger.info("Starting training...")
|
logger.info("Starting training...")
|
||||||
yield "Starting..."
|
yield "Starting..."
|
||||||
|
|
||||||
|
lora_trainable_param, lora_all_param = calc_trainable_parameters(lora_model)
|
||||||
|
|
||||||
|
if lora_all_param>0:
|
||||||
|
print(f"Trainable params: {lora_trainable_param:,d} ({100 * lora_trainable_param / lora_all_param:.4f} %), All params: {lora_all_param:,d} (Model: {model_all_params:,d})")
|
||||||
|
|
||||||
|
|
||||||
train_log.update({"base_model_name": shared.model_name})
|
train_log.update({"base_model_name": shared.model_name})
|
||||||
train_log.update({"base_model_class": shared.model.__class__.__name__})
|
train_log.update({"base_model_class": shared.model.__class__.__name__})
|
||||||
train_log.update({"base_loaded_in_4bit": getattr(lora_model, "is_loaded_in_4bit", False)})
|
train_log.update({"base_loaded_in_4bit": getattr(lora_model, "is_loaded_in_4bit", False)})
|
||||||
|
Loading…
Reference in New Issue
Block a user