mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Add support for the latest GPTQ models with group-size (#530)
**Warning: old 4-bit weights will not work anymore!** See here how to get up to date weights: https://github.com/oobabooga/text-generation-webui/wiki/LLaMA-model#step-2-get-the-pre-converted-weights
This commit is contained in:
parent
8c8e8b4450
commit
49c10c5570
@ -176,10 +176,10 @@ Optionally, you can use the following command-line flags:
|
|||||||
| `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. |
|
| `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. |
|
||||||
| `--cpu` | Use the CPU to generate text.|
|
| `--cpu` | Use the CPU to generate text.|
|
||||||
| `--load-in-8bit` | Load the model with 8-bit precision.|
|
| `--load-in-8bit` | Load the model with 8-bit precision.|
|
||||||
| `--load-in-4bit` | DEPRECATED: use `--gptq-bits 4` instead. |
|
| `--wbits WBITS` | GPTQ: Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
|
||||||
| `--gptq-bits GPTQ_BITS` | GPTQ: Load a pre-quantized model with specified precision. 2, 3, 4 and 8 (bit) are supported. Currently only works with LLaMA and OPT. |
|
| `--model_type MODEL_TYPE` | GPTQ: Model type of pre-quantized model. Currently only LLaMA and OPT are supported. |
|
||||||
| `--gptq-model-type MODEL_TYPE` | GPTQ: Model type of pre-quantized model. Currently only LLaMa and OPT are supported. |
|
| `--groupsize GROUPSIZE` | GPTQ: Group size. |
|
||||||
| `--gptq-pre-layer GPTQ_PRE_LAYER` | GPTQ: The number of layers to preload. |
|
| `--pre_layer PRE_LAYER` | GPTQ: The number of layers to preload. |
|
||||||
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
|
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
|
||||||
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.|
|
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.|
|
||||||
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
|
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
|
||||||
|
@ -14,18 +14,21 @@ import opt
|
|||||||
|
|
||||||
|
|
||||||
def load_quantized(model_name):
|
def load_quantized(model_name):
|
||||||
if not shared.args.gptq_model_type:
|
if not shared.args.model_type:
|
||||||
# Try to determine model type from model name
|
# Try to determine model type from model name
|
||||||
model_type = model_name.split('-')[0].lower()
|
if model_name.lower().startswith(('llama', 'alpaca')):
|
||||||
if model_type not in ('llama', 'opt'):
|
model_type = 'llama'
|
||||||
print("Can't determine model type from model name. Please specify it manually using --gptq-model-type "
|
elif model_name.lower().startswith(('opt', 'galactica')):
|
||||||
|
model_type = 'opt'
|
||||||
|
else:
|
||||||
|
print("Can't determine model type from model name. Please specify it manually using --model_type "
|
||||||
"argument")
|
"argument")
|
||||||
exit()
|
exit()
|
||||||
else:
|
else:
|
||||||
model_type = shared.args.gptq_model_type.lower()
|
model_type = shared.args.model_type.lower()
|
||||||
|
|
||||||
if model_type == 'llama':
|
if model_type == 'llama':
|
||||||
if not shared.args.gptq_pre_layer:
|
if not shared.args.pre_layer:
|
||||||
load_quant = llama.load_quant
|
load_quant = llama.load_quant
|
||||||
else:
|
else:
|
||||||
load_quant = llama_inference_offload.load_quant
|
load_quant = llama_inference_offload.load_quant
|
||||||
@ -35,20 +38,29 @@ def load_quantized(model_name):
|
|||||||
print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported")
|
print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported")
|
||||||
exit()
|
exit()
|
||||||
|
|
||||||
|
# Now we are going to try to locate the quantized model file.
|
||||||
path_to_model = Path(f'models/{model_name}')
|
path_to_model = Path(f'models/{model_name}')
|
||||||
if path_to_model.name.lower().startswith('llama-7b'):
|
found_pts = list(path_to_model.glob("*.pt"))
|
||||||
pt_model = f'llama-7b-{shared.args.gptq_bits}bit'
|
found_safetensors = list(path_to_model.glob("*.safetensors"))
|
||||||
elif path_to_model.name.lower().startswith('llama-13b'):
|
pt_path = None
|
||||||
pt_model = f'llama-13b-{shared.args.gptq_bits}bit'
|
|
||||||
elif path_to_model.name.lower().startswith('llama-30b'):
|
if len(found_pts) == 1:
|
||||||
pt_model = f'llama-30b-{shared.args.gptq_bits}bit'
|
pt_path = found_pts[0]
|
||||||
elif path_to_model.name.lower().startswith('llama-65b'):
|
elif len(found_safetensors) == 1:
|
||||||
pt_model = f'llama-65b-{shared.args.gptq_bits}bit'
|
pt_path = found_safetensors[0]
|
||||||
else:
|
else:
|
||||||
pt_model = f'{model_name}-{shared.args.gptq_bits}bit'
|
if path_to_model.name.lower().startswith('llama-7b'):
|
||||||
|
pt_model = f'llama-7b-{shared.args.wbits}bit'
|
||||||
|
elif path_to_model.name.lower().startswith('llama-13b'):
|
||||||
|
pt_model = f'llama-13b-{shared.args.wbits}bit'
|
||||||
|
elif path_to_model.name.lower().startswith('llama-30b'):
|
||||||
|
pt_model = f'llama-30b-{shared.args.wbits}bit'
|
||||||
|
elif path_to_model.name.lower().startswith('llama-65b'):
|
||||||
|
pt_model = f'llama-65b-{shared.args.wbits}bit'
|
||||||
|
else:
|
||||||
|
pt_model = f'{model_name}-{shared.args.wbits}bit'
|
||||||
|
|
||||||
# Try to find the .safetensors or .pt both in models/ and in the subfolder
|
# Try to find the .safetensors or .pt both in models/ and in the subfolder
|
||||||
pt_path = None
|
|
||||||
for path in [Path(p+ext) for ext in ['.safetensors', '.pt'] for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
|
for path in [Path(p+ext) for ext in ['.safetensors', '.pt'] for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
|
||||||
if path.exists():
|
if path.exists():
|
||||||
print(f"Found {path}")
|
print(f"Found {path}")
|
||||||
@ -56,14 +68,14 @@ def load_quantized(model_name):
|
|||||||
break
|
break
|
||||||
|
|
||||||
if not pt_path:
|
if not pt_path:
|
||||||
print(f"Could not find {pt_model}, exiting...")
|
print("Could not find the quantized model in .pt or .safetensors format, exiting...")
|
||||||
exit()
|
exit()
|
||||||
|
|
||||||
# qwopqwop200's offload
|
# qwopqwop200's offload
|
||||||
if shared.args.gptq_pre_layer:
|
if shared.args.pre_layer:
|
||||||
model = load_quant(str(path_to_model), str(pt_path), shared.args.gptq_bits, shared.args.gptq_pre_layer)
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer)
|
||||||
else:
|
else:
|
||||||
model = load_quant(str(path_to_model), str(pt_path), shared.args.gptq_bits)
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize)
|
||||||
|
|
||||||
# accelerate offload (doesn't work properly)
|
# accelerate offload (doesn't work properly)
|
||||||
if shared.args.gpu_memory:
|
if shared.args.gpu_memory:
|
||||||
|
@ -44,7 +44,7 @@ def load_model(model_name):
|
|||||||
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
||||||
|
|
||||||
# Default settings
|
# Default settings
|
||||||
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
|
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.wbits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
|
||||||
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
||||||
else:
|
else:
|
||||||
@ -95,7 +95,7 @@ def load_model(model_name):
|
|||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
# Quantized model
|
# Quantized model
|
||||||
elif shared.args.gptq_bits > 0:
|
elif shared.args.wbits > 0:
|
||||||
from modules.GPTQ_loader import load_quantized
|
from modules.GPTQ_loader import load_quantized
|
||||||
|
|
||||||
model = load_quantized(model_name)
|
model = load_quantized(model_name)
|
||||||
|
@ -52,7 +52,8 @@ settings = {
|
|||||||
'default': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
|
'default': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
|
||||||
'^(gpt4chan|gpt-4chan|4chan)': '-----\n--- 865467536\nInput text\n--- 865467537\n',
|
'^(gpt4chan|gpt-4chan|4chan)': '-----\n--- 865467536\nInput text\n--- 865467537\n',
|
||||||
'(rosey|chip|joi)_.*_instruct.*': 'User: \n',
|
'(rosey|chip|joi)_.*_instruct.*': 'User: \n',
|
||||||
'oasst-*': '<|prompter|>Write a story about future of AI development<|endoftext|><|assistant|>'
|
'oasst-*': '<|prompter|>Write a story about future of AI development<|endoftext|><|assistant|>',
|
||||||
|
'alpaca-*': "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction:\nWrite a poem about the transformers Python library. \nMention the word \"large language models\" in that poem.\n### Response:\n",
|
||||||
},
|
},
|
||||||
'lora_prompts': {
|
'lora_prompts': {
|
||||||
'default': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
|
'default': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
|
||||||
@ -78,10 +79,15 @@ parser.add_argument('--chat', action='store_true', help='Launch the web UI in ch
|
|||||||
parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
|
parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
|
||||||
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
|
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
|
||||||
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
|
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
|
||||||
parser.add_argument('--load-in-4bit', action='store_true', help='DEPRECATED: use --gptq-bits 4 instead.')
|
|
||||||
parser.add_argument('--gptq-bits', type=int, default=0, help='GPTQ: Load a pre-quantized model with specified precision. 2, 3, 4 and 8bit are supported. Currently only works with LLaMA and OPT.')
|
parser.add_argument('--gptq-bits', type=int, default=0, help='DEPRECATED: use --wbits instead.')
|
||||||
parser.add_argument('--gptq-model-type', type=str, help='GPTQ: Model type of pre-quantized model. Currently only LLaMa and OPT are supported.')
|
parser.add_argument('--gptq-model-type', type=str, help='DEPRECATED: use --model_type instead.')
|
||||||
parser.add_argument('--gptq-pre-layer', type=int, default=0, help='GPTQ: The number of layers to preload.')
|
parser.add_argument('--gptq-pre-layer', type=int, default=0, help='DEPRECATED: use --pre_layer instead.')
|
||||||
|
parser.add_argument('--wbits', type=int, default=0, help='GPTQ: Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
||||||
|
parser.add_argument('--model_type', type=str, help='GPTQ: Model type of pre-quantized model. Currently only LLaMA and OPT are supported.')
|
||||||
|
parser.add_argument('--groupsize', type=int, default=-1, help='GPTQ: Group size.')
|
||||||
|
parser.add_argument('--pre_layer', type=int, default=0, help='GPTQ: The number of layers to preload.')
|
||||||
|
|
||||||
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
||||||
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
||||||
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
||||||
@ -109,6 +115,8 @@ parser.add_argument('--verbose', action='store_true', help='Print the prompts to
|
|||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Provisional, this will be deleted later
|
# Provisional, this will be deleted later
|
||||||
if args.load_in_4bit:
|
deprecated_dict = {'gptq_bits': ['wbits', 0], 'gptq_model_type': ['model_type', None], 'gptq_pre_layer': ['prelayer', 0]}
|
||||||
print("Warning: --load-in-4bit is deprecated and will be removed. Use --gptq-bits 4 instead.\n")
|
for k in deprecated_dict:
|
||||||
args.gptq_bits = 4
|
if eval(f"args.{k}") != deprecated_dict[k][1]:
|
||||||
|
print(f"Warning: --{k} is deprecated and will be removed. Use --{deprecated_dict[k][0]} instead.")
|
||||||
|
exec(f"args.{deprecated_dict[k][0]} = args.{k}")
|
||||||
|
@ -237,8 +237,9 @@ if shared.args.lora:
|
|||||||
|
|
||||||
# Default UI settings
|
# Default UI settings
|
||||||
default_preset = shared.settings['presets'][next((k for k in shared.settings['presets'] if re.match(k.lower(), shared.model_name.lower())), 'default')]
|
default_preset = shared.settings['presets'][next((k for k in shared.settings['presets'] if re.match(k.lower(), shared.model_name.lower())), 'default')]
|
||||||
|
if shared.lora_name != "None":
|
||||||
default_text = shared.settings['lora_prompts'][next((k for k in shared.settings['lora_prompts'] if re.match(k.lower(), shared.lora_name.lower())), 'default')]
|
default_text = shared.settings['lora_prompts'][next((k for k in shared.settings['lora_prompts'] if re.match(k.lower(), shared.lora_name.lower())), 'default')]
|
||||||
if default_text == '':
|
else:
|
||||||
default_text = shared.settings['prompts'][next((k for k in shared.settings['prompts'] if re.match(k.lower(), shared.model_name.lower())), 'default')]
|
default_text = shared.settings['prompts'][next((k for k in shared.settings['prompts'] if re.match(k.lower(), shared.model_name.lower())), 'default')]
|
||||||
title ='Text generation web UI'
|
title ='Text generation web UI'
|
||||||
description = '\n\n# Text generation lab\nGenerate text using Large Language Models.\n'
|
description = '\n\n# Text generation lab\nGenerate text using Large Language Models.\n'
|
||||||
|
Loading…
Reference in New Issue
Block a user