mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-29 10:59:32 +01:00
Merge branch 'dev' into TheLounger-style_improvements
This commit is contained in:
commit
4aeebfc571
@ -237,7 +237,7 @@ List of command-line flags
|
|||||||
| `--no_use_fast` | Set use_fast=False while loading the tokenizer (it's True by default). Use this if you have any problems related to use_fast. |
|
| `--no_use_fast` | Set use_fast=False while loading the tokenizer (it's True by default). Use this if you have any problems related to use_fast. |
|
||||||
| `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. |
|
| `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. |
|
||||||
|
|
||||||
#### Accelerate 4-bit
|
#### bitsandbytes 4-bit
|
||||||
|
|
||||||
⚠️ Requires minimum compute of 7.0 on Windows at the moment.
|
⚠️ Requires minimum compute of 7.0 on Windows at the moment.
|
||||||
|
|
||||||
|
@ -67,8 +67,56 @@ This extension uses the following parameters (from `settings.json`):
|
|||||||
|
|
||||||
## Usage through API
|
## Usage through API
|
||||||
|
|
||||||
|
### Chat completions endpoint
|
||||||
|
|
||||||
|
#### With an image URL
|
||||||
|
|
||||||
|
```shell
|
||||||
|
curl http://127.0.0.1:5000/v1/chat/completions \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"image_url": "https://avatars.githubusercontent.com/u/112222186?v=4"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "What is unusual about this image?"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
#### With a Base64 image
|
||||||
|
|
||||||
|
```python
|
||||||
|
import base64
|
||||||
|
import json
|
||||||
|
import requests
|
||||||
|
|
||||||
|
img = open('image.jpg', 'rb')
|
||||||
|
img_bytes = img.read()
|
||||||
|
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
|
||||||
|
data = { "messages": [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"image_url": f"data:image/jpeg;base64,{img_base64}"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "what is unusual about this image?"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
response = requests.post('http://127.0.0.1:5000/v1/chat/completions', json=data)
|
||||||
|
print(response.text)
|
||||||
|
```
|
||||||
|
|
||||||
You can run the multimodal inference through API, by inputting the images to prompt. Images are embedded like so: `f'<img src="data:image/jpeg;base64,{img_str}">'`, where `img_str` is base-64 jpeg data. Note that you will need to launch `server.py` with the arguments `--api --extensions multimodal`.
|
You can run the multimodal inference through API, by inputting the images to prompt. Images are embedded like so: `f'<img src="data:image/jpeg;base64,{img_str}">'`, where `img_str` is base-64 jpeg data. Note that you will need to launch `server.py` with the arguments `--api --extensions multimodal`.
|
||||||
|
|
||||||
|
### Completions endpoint
|
||||||
|
|
||||||
Python example:
|
Python example:
|
||||||
|
|
||||||
```Python
|
```Python
|
||||||
|
@ -1,10 +1,15 @@
|
|||||||
|
import base64
|
||||||
import copy
|
import copy
|
||||||
|
import re
|
||||||
import time
|
import time
|
||||||
from collections import deque
|
from collections import deque
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
import requests
|
||||||
import tiktoken
|
import tiktoken
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
from PIL import Image
|
||||||
from transformers import LogitsProcessor, LogitsProcessorList
|
from transformers import LogitsProcessor, LogitsProcessorList
|
||||||
|
|
||||||
from extensions.openai.errors import InvalidRequestError
|
from extensions.openai.errors import InvalidRequestError
|
||||||
@ -140,7 +145,25 @@ def convert_history(history):
|
|||||||
system_message = ""
|
system_message = ""
|
||||||
|
|
||||||
for entry in history:
|
for entry in history:
|
||||||
|
if "image_url" in entry:
|
||||||
|
image_url = entry['image_url']
|
||||||
|
if "base64" in image_url:
|
||||||
|
image_url = re.sub('^data:image/.+;base64,', '', image_url)
|
||||||
|
img = Image.open(BytesIO(base64.b64decode(image_url)))
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
my_res = requests.get(image_url)
|
||||||
|
img = Image.open(BytesIO(my_res.content))
|
||||||
|
except Exception:
|
||||||
|
raise 'Image cannot be loaded from the URL!'
|
||||||
|
|
||||||
|
buffered = BytesIO()
|
||||||
|
img.save(buffered, format="JPEG")
|
||||||
|
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
||||||
|
content = f'<img src="data:image/jpeg;base64,{img_str}">'
|
||||||
|
else:
|
||||||
content = entry["content"]
|
content = entry["content"]
|
||||||
|
|
||||||
role = entry["role"]
|
role = entry["role"]
|
||||||
|
|
||||||
if role == "user":
|
if role == "user":
|
||||||
@ -182,7 +205,8 @@ def chat_completions_common(body: dict, is_legacy: bool = False, stream=False) -
|
|||||||
raise InvalidRequestError(message="messages: missing role", param='messages')
|
raise InvalidRequestError(message="messages: missing role", param='messages')
|
||||||
elif m['role'] == 'function':
|
elif m['role'] == 'function':
|
||||||
raise InvalidRequestError(message="role: function is not supported.", param='messages')
|
raise InvalidRequestError(message="role: function is not supported.", param='messages')
|
||||||
if 'content' not in m:
|
|
||||||
|
if 'content' not in m and "image_url" not in m:
|
||||||
raise InvalidRequestError(message="messages: missing content", param='messages')
|
raise InvalidRequestError(message="messages: missing content", param='messages')
|
||||||
|
|
||||||
# Chat Completions
|
# Chat Completions
|
||||||
|
25
instruction-templates/Synthia-CoT.yaml
Normal file
25
instruction-templates/Synthia-CoT.yaml
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
instruction_template: |-
|
||||||
|
{%- set found_item = false -%}
|
||||||
|
{%- for message in messages -%}
|
||||||
|
{%- if message['role'] == 'system' -%}
|
||||||
|
{%- set found_item = true -%}
|
||||||
|
{%- endif -%}
|
||||||
|
{%- endfor -%}
|
||||||
|
{%- if not found_item -%}
|
||||||
|
{{-'SYSTEM: ' + 'Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.' + '\n' -}}
|
||||||
|
{%- endif %}
|
||||||
|
{%- for message in messages %}
|
||||||
|
{%- if message['role'] == 'system' -%}
|
||||||
|
{{-'SYSTEM: ' + message['content'] + '\n' -}}
|
||||||
|
{%- else -%}
|
||||||
|
{%- if message['role'] == 'user' -%}
|
||||||
|
{{-'USER: ' + message['content'] + '\n'-}}
|
||||||
|
{%- else -%}
|
||||||
|
{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}
|
||||||
|
{%- endif -%}
|
||||||
|
{%- endif -%}
|
||||||
|
{%- endfor -%}
|
||||||
|
{%- if add_generation_prompt -%}
|
||||||
|
{{-'ASSISTANT:'-}}
|
||||||
|
{%- endif -%}
|
||||||
|
|
25
instruction-templates/Synthia.yaml
Normal file
25
instruction-templates/Synthia.yaml
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
instruction_template: |-
|
||||||
|
{%- set found_item = false -%}
|
||||||
|
{%- for message in messages -%}
|
||||||
|
{%- if message['role'] == 'system' -%}
|
||||||
|
{%- set found_item = true -%}
|
||||||
|
{%- endif -%}
|
||||||
|
{%- endfor -%}
|
||||||
|
{%- if not found_item -%}
|
||||||
|
{{-'SYSTEM: ' + 'Answer the question thoughtfully and intelligently. Always answer without hesitation.' + '\n' -}}
|
||||||
|
{%- endif %}
|
||||||
|
{%- for message in messages %}
|
||||||
|
{%- if message['role'] == 'system' -%}
|
||||||
|
{{-'SYSTEM: ' + message['content'] + '\n' -}}
|
||||||
|
{%- else -%}
|
||||||
|
{%- if message['role'] == 'user' -%}
|
||||||
|
{{-'USER: ' + message['content'] + '\n'-}}
|
||||||
|
{%- else -%}
|
||||||
|
{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}
|
||||||
|
{%- endif -%}
|
||||||
|
{%- endif -%}
|
||||||
|
{%- endfor -%}
|
||||||
|
{%- if add_generation_prompt -%}
|
||||||
|
{{-'ASSISTANT:'-}}
|
||||||
|
{%- endif -%}
|
||||||
|
|
@ -188,3 +188,5 @@
|
|||||||
instruction_template: 'ChatML'
|
instruction_template: 'ChatML'
|
||||||
(dolphin).*:
|
(dolphin).*:
|
||||||
instruction_template: 'ChatML'
|
instruction_template: 'ChatML'
|
||||||
|
.*synthia:
|
||||||
|
instruction_template: 'Synthia'
|
||||||
|
@ -168,8 +168,9 @@ loaders_and_params = OrderedDict({
|
|||||||
]
|
]
|
||||||
})
|
})
|
||||||
|
|
||||||
loaders_samplers = {
|
|
||||||
'Transformers': {
|
def transformers_samplers():
|
||||||
|
return {
|
||||||
'temperature',
|
'temperature',
|
||||||
'temperature_last',
|
'temperature_last',
|
||||||
'top_p',
|
'top_p',
|
||||||
@ -205,7 +206,16 @@ loaders_samplers = {
|
|||||||
'add_bos_token',
|
'add_bos_token',
|
||||||
'skip_special_tokens',
|
'skip_special_tokens',
|
||||||
'auto_max_new_tokens',
|
'auto_max_new_tokens',
|
||||||
},
|
}
|
||||||
|
|
||||||
|
|
||||||
|
loaders_samplers = {
|
||||||
|
'Transformers': transformers_samplers(),
|
||||||
|
'AutoGPTQ': transformers_samplers(),
|
||||||
|
'GPTQ-for-LLaMa': transformers_samplers(),
|
||||||
|
'AutoAWQ': transformers_samplers(),
|
||||||
|
'QuIP#': transformers_samplers(),
|
||||||
|
'HQQ': transformers_samplers(),
|
||||||
'ExLlama_HF': {
|
'ExLlama_HF': {
|
||||||
'temperature',
|
'temperature',
|
||||||
'temperature_last',
|
'temperature_last',
|
||||||
@ -306,80 +316,6 @@ loaders_samplers = {
|
|||||||
'skip_special_tokens',
|
'skip_special_tokens',
|
||||||
'auto_max_new_tokens',
|
'auto_max_new_tokens',
|
||||||
},
|
},
|
||||||
'AutoGPTQ': {
|
|
||||||
'temperature',
|
|
||||||
'temperature_last',
|
|
||||||
'top_p',
|
|
||||||
'min_p',
|
|
||||||
'top_k',
|
|
||||||
'typical_p',
|
|
||||||
'epsilon_cutoff',
|
|
||||||
'eta_cutoff',
|
|
||||||
'tfs',
|
|
||||||
'top_a',
|
|
||||||
'repetition_penalty',
|
|
||||||
'presence_penalty',
|
|
||||||
'frequency_penalty',
|
|
||||||
'repetition_penalty_range',
|
|
||||||
'encoder_repetition_penalty',
|
|
||||||
'no_repeat_ngram_size',
|
|
||||||
'min_length',
|
|
||||||
'seed',
|
|
||||||
'do_sample',
|
|
||||||
'penalty_alpha',
|
|
||||||
'num_beams',
|
|
||||||
'length_penalty',
|
|
||||||
'early_stopping',
|
|
||||||
'mirostat_mode',
|
|
||||||
'mirostat_tau',
|
|
||||||
'mirostat_eta',
|
|
||||||
'grammar_file_row',
|
|
||||||
'grammar_string',
|
|
||||||
'guidance_scale',
|
|
||||||
'negative_prompt',
|
|
||||||
'ban_eos_token',
|
|
||||||
'custom_token_bans',
|
|
||||||
'add_bos_token',
|
|
||||||
'skip_special_tokens',
|
|
||||||
'auto_max_new_tokens',
|
|
||||||
},
|
|
||||||
'GPTQ-for-LLaMa': {
|
|
||||||
'temperature',
|
|
||||||
'temperature_last',
|
|
||||||
'top_p',
|
|
||||||
'min_p',
|
|
||||||
'top_k',
|
|
||||||
'typical_p',
|
|
||||||
'epsilon_cutoff',
|
|
||||||
'eta_cutoff',
|
|
||||||
'tfs',
|
|
||||||
'top_a',
|
|
||||||
'repetition_penalty',
|
|
||||||
'presence_penalty',
|
|
||||||
'frequency_penalty',
|
|
||||||
'repetition_penalty_range',
|
|
||||||
'encoder_repetition_penalty',
|
|
||||||
'no_repeat_ngram_size',
|
|
||||||
'min_length',
|
|
||||||
'seed',
|
|
||||||
'do_sample',
|
|
||||||
'penalty_alpha',
|
|
||||||
'num_beams',
|
|
||||||
'length_penalty',
|
|
||||||
'early_stopping',
|
|
||||||
'mirostat_mode',
|
|
||||||
'mirostat_tau',
|
|
||||||
'mirostat_eta',
|
|
||||||
'grammar_file_row',
|
|
||||||
'grammar_string',
|
|
||||||
'guidance_scale',
|
|
||||||
'negative_prompt',
|
|
||||||
'ban_eos_token',
|
|
||||||
'custom_token_bans',
|
|
||||||
'add_bos_token',
|
|
||||||
'skip_special_tokens',
|
|
||||||
'auto_max_new_tokens',
|
|
||||||
},
|
|
||||||
'llama.cpp': {
|
'llama.cpp': {
|
||||||
'temperature',
|
'temperature',
|
||||||
'top_p',
|
'top_p',
|
||||||
@ -439,117 +375,6 @@ loaders_samplers = {
|
|||||||
'repetition_penalty',
|
'repetition_penalty',
|
||||||
'repetition_penalty_range',
|
'repetition_penalty_range',
|
||||||
},
|
},
|
||||||
'AutoAWQ': {
|
|
||||||
'temperature',
|
|
||||||
'temperature_last',
|
|
||||||
'top_p',
|
|
||||||
'min_p',
|
|
||||||
'top_k',
|
|
||||||
'typical_p',
|
|
||||||
'epsilon_cutoff',
|
|
||||||
'eta_cutoff',
|
|
||||||
'tfs',
|
|
||||||
'top_a',
|
|
||||||
'repetition_penalty',
|
|
||||||
'presence_penalty',
|
|
||||||
'frequency_penalty',
|
|
||||||
'repetition_penalty_range',
|
|
||||||
'encoder_repetition_penalty',
|
|
||||||
'no_repeat_ngram_size',
|
|
||||||
'min_length',
|
|
||||||
'seed',
|
|
||||||
'do_sample',
|
|
||||||
'penalty_alpha',
|
|
||||||
'num_beams',
|
|
||||||
'length_penalty',
|
|
||||||
'early_stopping',
|
|
||||||
'mirostat_mode',
|
|
||||||
'mirostat_tau',
|
|
||||||
'mirostat_eta',
|
|
||||||
'grammar_file_row',
|
|
||||||
'grammar_string',
|
|
||||||
'guidance_scale',
|
|
||||||
'negative_prompt',
|
|
||||||
'ban_eos_token',
|
|
||||||
'custom_token_bans',
|
|
||||||
'add_bos_token',
|
|
||||||
'skip_special_tokens',
|
|
||||||
'auto_max_new_tokens',
|
|
||||||
},
|
|
||||||
'QuIP#': {
|
|
||||||
'temperature',
|
|
||||||
'temperature_last',
|
|
||||||
'top_p',
|
|
||||||
'min_p',
|
|
||||||
'top_k',
|
|
||||||
'typical_p',
|
|
||||||
'epsilon_cutoff',
|
|
||||||
'eta_cutoff',
|
|
||||||
'tfs',
|
|
||||||
'top_a',
|
|
||||||
'repetition_penalty',
|
|
||||||
'presence_penalty',
|
|
||||||
'frequency_penalty',
|
|
||||||
'repetition_penalty_range',
|
|
||||||
'encoder_repetition_penalty',
|
|
||||||
'no_repeat_ngram_size',
|
|
||||||
'min_length',
|
|
||||||
'seed',
|
|
||||||
'do_sample',
|
|
||||||
'penalty_alpha',
|
|
||||||
'num_beams',
|
|
||||||
'length_penalty',
|
|
||||||
'early_stopping',
|
|
||||||
'mirostat_mode',
|
|
||||||
'mirostat_tau',
|
|
||||||
'mirostat_eta',
|
|
||||||
'grammar_file_row',
|
|
||||||
'grammar_string',
|
|
||||||
'guidance_scale',
|
|
||||||
'negative_prompt',
|
|
||||||
'ban_eos_token',
|
|
||||||
'custom_token_bans',
|
|
||||||
'add_bos_token',
|
|
||||||
'skip_special_tokens',
|
|
||||||
'auto_max_new_tokens',
|
|
||||||
},
|
|
||||||
'HQQ': {
|
|
||||||
'temperature',
|
|
||||||
'temperature_last',
|
|
||||||
'top_p',
|
|
||||||
'min_p',
|
|
||||||
'top_k',
|
|
||||||
'typical_p',
|
|
||||||
'epsilon_cutoff',
|
|
||||||
'eta_cutoff',
|
|
||||||
'tfs',
|
|
||||||
'top_a',
|
|
||||||
'repetition_penalty',
|
|
||||||
'presence_penalty',
|
|
||||||
'frequency_penalty',
|
|
||||||
'repetition_penalty_range',
|
|
||||||
'encoder_repetition_penalty',
|
|
||||||
'no_repeat_ngram_size',
|
|
||||||
'min_length',
|
|
||||||
'seed',
|
|
||||||
'do_sample',
|
|
||||||
'penalty_alpha',
|
|
||||||
'num_beams',
|
|
||||||
'length_penalty',
|
|
||||||
'early_stopping',
|
|
||||||
'mirostat_mode',
|
|
||||||
'mirostat_tau',
|
|
||||||
'mirostat_eta',
|
|
||||||
'grammar_file_row',
|
|
||||||
'grammar_string',
|
|
||||||
'guidance_scale',
|
|
||||||
'negative_prompt',
|
|
||||||
'ban_eos_token',
|
|
||||||
'custom_token_bans',
|
|
||||||
'add_bos_token',
|
|
||||||
'skip_special_tokens',
|
|
||||||
'auto_max_new_tokens',
|
|
||||||
},
|
|
||||||
}
|
}
|
||||||
|
|
||||||
loaders_model_types = {
|
loaders_model_types = {
|
||||||
|
@ -482,6 +482,7 @@ def clear_torch_cache():
|
|||||||
|
|
||||||
def unload_model():
|
def unload_model():
|
||||||
shared.model = shared.tokenizer = None
|
shared.model = shared.tokenizer = None
|
||||||
|
shared.model_name = 'None'
|
||||||
shared.lora_names = []
|
shared.lora_names = []
|
||||||
shared.model_dirty_from_training = False
|
shared.model_dirty_from_training = False
|
||||||
clear_torch_cache()
|
clear_torch_cache()
|
||||||
|
@ -45,6 +45,7 @@ settings = {
|
|||||||
'truncation_length_min': 0,
|
'truncation_length_min': 0,
|
||||||
'truncation_length_max': 200000,
|
'truncation_length_max': 200000,
|
||||||
'max_tokens_second': 0,
|
'max_tokens_second': 0,
|
||||||
|
'max_updates_second': 0,
|
||||||
'custom_stopping_strings': '',
|
'custom_stopping_strings': '',
|
||||||
'custom_token_bans': '',
|
'custom_token_bans': '',
|
||||||
'auto_max_new_tokens': False,
|
'auto_max_new_tokens': False,
|
||||||
@ -64,137 +65,155 @@ settings = {
|
|||||||
'default_extensions': ['gallery'],
|
'default_extensions': ['gallery'],
|
||||||
}
|
}
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54))
|
|
||||||
|
# Parser copied from https://github.com/vladmandic/automatic
|
||||||
|
parser = argparse.ArgumentParser(description="Text generation web UI", conflict_handler='resolve', add_help=True, formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=55, indent_increment=2, width=200))
|
||||||
|
|
||||||
# Basic settings
|
# Basic settings
|
||||||
parser.add_argument('--multi-user', action='store_true', help='Multi-user mode. Chat histories are not saved or automatically loaded. Warning: this is likely not safe for sharing publicly.')
|
group = parser.add_argument_group('Basic settings')
|
||||||
parser.add_argument('--character', type=str, help='The name of the character to load in chat mode by default.')
|
group.add_argument('--multi-user', action='store_true', help='Multi-user mode. Chat histories are not saved or automatically loaded. Warning: this is likely not safe for sharing publicly.')
|
||||||
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
|
group.add_argument('--character', type=str, help='The name of the character to load in chat mode by default.')
|
||||||
parser.add_argument('--lora', type=str, nargs='+', help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.')
|
group.add_argument('--model', type=str, help='Name of the model to load by default.')
|
||||||
parser.add_argument('--model-dir', type=str, default='models/', help='Path to directory with all the models.')
|
group.add_argument('--lora', type=str, nargs='+', help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.')
|
||||||
parser.add_argument('--lora-dir', type=str, default='loras/', help='Path to directory with all the loras.')
|
group.add_argument('--model-dir', type=str, default='models/', help='Path to directory with all the models.')
|
||||||
parser.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.')
|
group.add_argument('--lora-dir', type=str, default='loras/', help='Path to directory with all the loras.')
|
||||||
parser.add_argument('--settings', type=str, help='Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml, this file will be loaded by default without the need to use the --settings flag.')
|
group.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.')
|
||||||
parser.add_argument('--extensions', type=str, nargs='+', help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
|
group.add_argument('--settings', type=str, help='Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml, this file will be loaded by default without the need to use the --settings flag.')
|
||||||
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
group.add_argument('--extensions', type=str, nargs='+', help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
|
||||||
parser.add_argument('--chat-buttons', action='store_true', help='Show buttons on the chat tab instead of a hover menu.')
|
group.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
||||||
|
group.add_argument('--chat-buttons', action='store_true', help='Show buttons on the chat tab instead of a hover menu.')
|
||||||
|
|
||||||
# Model loader
|
# Model loader
|
||||||
parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlama_HF, ExLlamav2_HF, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ExLlama, ExLlamav2, ctransformers, QuIP#.')
|
group = parser.add_argument_group('Model loader')
|
||||||
|
group.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlama_HF, ExLlamav2_HF, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ExLlama, ExLlamav2, ctransformers, QuIP#.')
|
||||||
|
|
||||||
# Accelerate/transformers
|
# Transformers/Accelerate
|
||||||
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
|
group = parser.add_argument_group('Transformers/Accelerate')
|
||||||
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
group.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
|
||||||
parser.add_argument('--gpu-memory', type=str, nargs='+', help='Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.')
|
group.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
||||||
parser.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.')
|
group.add_argument('--gpu-memory', type=str, nargs='+', help='Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.')
|
||||||
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
group.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.')
|
||||||
parser.add_argument('--disk-cache-dir', type=str, default='cache', help='Directory to save the disk cache to. Defaults to "cache".')
|
group.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
||||||
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).')
|
group.add_argument('--disk-cache-dir', type=str, default='cache', help='Directory to save the disk cache to. Defaults to "cache".')
|
||||||
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
group.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).')
|
||||||
parser.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.')
|
group.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
||||||
parser.add_argument('--xformers', action='store_true', help='Use xformer\'s memory efficient attention. This is really old and probably doesn\'t do anything.')
|
group.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.')
|
||||||
parser.add_argument('--sdp-attention', action='store_true', help='Use PyTorch 2.0\'s SDP attention. Same as above.')
|
group.add_argument('--xformers', action='store_true', help='Use xformer\'s memory efficient attention. This is really old and probably doesn\'t do anything.')
|
||||||
parser.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.')
|
group.add_argument('--sdp-attention', action='store_true', help='Use PyTorch 2.0\'s SDP attention. Same as above.')
|
||||||
parser.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.')
|
group.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.')
|
||||||
parser.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.')
|
group.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.')
|
||||||
parser.add_argument('--use_flash_attention_2', action='store_true', help='Set use_flash_attention_2=True while loading the model.')
|
group.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.')
|
||||||
|
group.add_argument('--use_flash_attention_2', action='store_true', help='Set use_flash_attention_2=True while loading the model.')
|
||||||
|
|
||||||
# Accelerate 4-bit
|
# bitsandbytes 4-bit
|
||||||
parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision (using bitsandbytes).')
|
group = parser.add_argument_group('bitsandbytes 4-bit')
|
||||||
parser.add_argument('--use_double_quant', action='store_true', help='use_double_quant for 4-bit.')
|
group.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision (using bitsandbytes).')
|
||||||
parser.add_argument('--compute_dtype', type=str, default='float16', help='compute dtype for 4-bit. Valid options: bfloat16, float16, float32.')
|
group.add_argument('--use_double_quant', action='store_true', help='use_double_quant for 4-bit.')
|
||||||
parser.add_argument('--quant_type', type=str, default='nf4', help='quant_type for 4-bit. Valid options: nf4, fp4.')
|
group.add_argument('--compute_dtype', type=str, default='float16', help='compute dtype for 4-bit. Valid options: bfloat16, float16, float32.')
|
||||||
|
group.add_argument('--quant_type', type=str, default='nf4', help='quant_type for 4-bit. Valid options: nf4, fp4.')
|
||||||
|
|
||||||
# llama.cpp
|
# llama.cpp
|
||||||
parser.add_argument('--tensorcores', action='store_true', help='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.')
|
group = parser.add_argument_group('llama.cpp')
|
||||||
parser.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.')
|
group.add_argument('--tensorcores', action='store_true', help='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.')
|
||||||
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
|
group.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.')
|
||||||
parser.add_argument('--threads-batch', type=int, default=0, help='Number of threads to use for batches/prompt processing.')
|
group.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
|
||||||
parser.add_argument('--no_mul_mat_q', action='store_true', help='Disable the mulmat kernels.')
|
group.add_argument('--threads-batch', type=int, default=0, help='Number of threads to use for batches/prompt processing.')
|
||||||
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
|
group.add_argument('--no_mul_mat_q', action='store_true', help='Disable the mulmat kernels.')
|
||||||
parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
|
group.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
|
||||||
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
|
group.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
|
||||||
parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
|
group.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
|
||||||
parser.add_argument('--tensor_split', type=str, default=None, help='Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17.')
|
group.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
|
||||||
parser.add_argument('--numa', action='store_true', help='Activate NUMA task allocation for llama.cpp.')
|
group.add_argument('--tensor_split', type=str, default=None, help='Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17.')
|
||||||
parser.add_argument('--logits_all', action='store_true', help='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
|
group.add_argument('--numa', action='store_true', help='Activate NUMA task allocation for llama.cpp.')
|
||||||
parser.add_argument('--no_offload_kqv', action='store_true', help='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.')
|
group.add_argument('--logits_all', action='store_true', help='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
|
||||||
parser.add_argument('--cache-capacity', type=str, help='Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
|
group.add_argument('--no_offload_kqv', action='store_true', help='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.')
|
||||||
|
group.add_argument('--cache-capacity', type=str, help='Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
|
||||||
|
|
||||||
# ExLlama
|
# ExLlama
|
||||||
parser.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.')
|
group = parser.add_argument_group('ExLlama')
|
||||||
parser.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.')
|
group.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.')
|
||||||
parser.add_argument('--cfg-cache', action='store_true', help='ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.')
|
group.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.')
|
||||||
parser.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.')
|
group.add_argument('--cfg-cache', action='store_true', help='ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.')
|
||||||
parser.add_argument('--cache_8bit', action='store_true', help='Use 8-bit cache to save VRAM.')
|
group.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.')
|
||||||
parser.add_argument('--num_experts_per_token', type=int, default=2, help='Number of experts to use for generation. Applies to MoE models like Mixtral.')
|
group.add_argument('--cache_8bit', action='store_true', help='Use 8-bit cache to save VRAM.')
|
||||||
|
group.add_argument('--num_experts_per_token', type=int, default=2, help='Number of experts to use for generation. Applies to MoE models like Mixtral.')
|
||||||
|
|
||||||
# AutoGPTQ
|
# AutoGPTQ
|
||||||
parser.add_argument('--triton', action='store_true', help='Use triton.')
|
group = parser.add_argument_group('AutoGPTQ')
|
||||||
parser.add_argument('--no_inject_fused_attention', action='store_true', help='Disable the use of fused attention, which will use less VRAM at the cost of slower inference.')
|
group.add_argument('--triton', action='store_true', help='Use triton.')
|
||||||
parser.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference.')
|
group.add_argument('--no_inject_fused_attention', action='store_true', help='Disable the use of fused attention, which will use less VRAM at the cost of slower inference.')
|
||||||
parser.add_argument('--no_use_cuda_fp16', action='store_true', help='This can make models faster on some systems.')
|
group.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference.')
|
||||||
parser.add_argument('--desc_act', action='store_true', help='For models that do not have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.')
|
group.add_argument('--no_use_cuda_fp16', action='store_true', help='This can make models faster on some systems.')
|
||||||
parser.add_argument('--disable_exllama', action='store_true', help='Disable ExLlama kernel, which can improve inference speed on some systems.')
|
group.add_argument('--desc_act', action='store_true', help='For models that do not have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.')
|
||||||
parser.add_argument('--disable_exllamav2', action='store_true', help='Disable ExLlamav2 kernel.')
|
group.add_argument('--disable_exllama', action='store_true', help='Disable ExLlama kernel, which can improve inference speed on some systems.')
|
||||||
|
group.add_argument('--disable_exllamav2', action='store_true', help='Disable ExLlamav2 kernel.')
|
||||||
|
|
||||||
# GPTQ-for-LLaMa
|
# GPTQ-for-LLaMa
|
||||||
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
group = parser.add_argument_group('GPTQ-for-LLaMa')
|
||||||
parser.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
|
group.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
||||||
parser.add_argument('--groupsize', type=int, default=-1, help='Group size.')
|
group.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
|
||||||
parser.add_argument('--pre_layer', type=int, nargs='+', help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.')
|
group.add_argument('--groupsize', type=int, default=-1, help='Group size.')
|
||||||
parser.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.')
|
group.add_argument('--pre_layer', type=int, nargs='+', help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.')
|
||||||
parser.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.')
|
group.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.')
|
||||||
|
group.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.')
|
||||||
|
|
||||||
# HQQ
|
# HQQ
|
||||||
parser.add_argument('--hqq-backend', type=str, default='PYTORCH_COMPILE', help='Backend for the HQQ loader. Valid options: PYTORCH, PYTORCH_COMPILE, ATEN.')
|
group = parser.add_argument_group('HQQ')
|
||||||
|
group.add_argument('--hqq-backend', type=str, default='PYTORCH_COMPILE', help='Backend for the HQQ loader. Valid options: PYTORCH, PYTORCH_COMPILE, ATEN.')
|
||||||
|
|
||||||
# DeepSpeed
|
# DeepSpeed
|
||||||
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
|
group = parser.add_argument_group('DeepSpeed')
|
||||||
parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
group.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
|
||||||
parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
group.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
||||||
|
group.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
||||||
|
|
||||||
# RWKV
|
# RWKV
|
||||||
parser.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
|
group = parser.add_argument_group('RWKV')
|
||||||
parser.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
|
group.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
|
||||||
|
group.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
|
||||||
|
|
||||||
# RoPE
|
# RoPE
|
||||||
parser.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
|
group = parser.add_argument_group('RoPE')
|
||||||
parser.add_argument('--rope_freq_base', type=int, default=0, help='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63).')
|
group.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
|
||||||
parser.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.")
|
group.add_argument('--rope_freq_base', type=int, default=0, help='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63).')
|
||||||
|
group.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.")
|
||||||
|
|
||||||
# Gradio
|
# Gradio
|
||||||
parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
|
group = parser.add_argument_group('Gradio')
|
||||||
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
group.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
|
||||||
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
|
group.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
||||||
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
|
group.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
|
||||||
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
|
group.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
|
||||||
parser.add_argument('--gradio-auth', type=str, help='Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3".', default=None)
|
group.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
|
||||||
parser.add_argument('--gradio-auth-path', type=str, help='Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above.', default=None)
|
group.add_argument('--gradio-auth', type=str, help='Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3".', default=None)
|
||||||
parser.add_argument('--ssl-keyfile', type=str, help='The path to the SSL certificate key file.', default=None)
|
group.add_argument('--gradio-auth-path', type=str, help='Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above.', default=None)
|
||||||
parser.add_argument('--ssl-certfile', type=str, help='The path to the SSL certificate cert file.', default=None)
|
group.add_argument('--ssl-keyfile', type=str, help='The path to the SSL certificate key file.', default=None)
|
||||||
|
group.add_argument('--ssl-certfile', type=str, help='The path to the SSL certificate cert file.', default=None)
|
||||||
|
|
||||||
# API
|
# API
|
||||||
parser.add_argument('--api', action='store_true', help='Enable the API extension.')
|
group = parser.add_argument_group('API')
|
||||||
parser.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.')
|
group.add_argument('--api', action='store_true', help='Enable the API extension.')
|
||||||
parser.add_argument('--public-api-id', type=str, help='Tunnel ID for named Cloudflare Tunnel. Use together with public-api option.', default=None)
|
group.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.')
|
||||||
parser.add_argument('--api-port', type=int, default=5000, help='The listening port for the API.')
|
group.add_argument('--public-api-id', type=str, help='Tunnel ID for named Cloudflare Tunnel. Use together with public-api option.', default=None)
|
||||||
parser.add_argument('--api-key', type=str, default='', help='API authentication key.')
|
group.add_argument('--api-port', type=int, default=5000, help='The listening port for the API.')
|
||||||
parser.add_argument('--admin-key', type=str, default='', help='API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key.')
|
group.add_argument('--api-key', type=str, default='', help='API authentication key.')
|
||||||
parser.add_argument('--nowebui', action='store_true', help='Do not launch the Gradio UI. Useful for launching the API in standalone mode.')
|
group.add_argument('--admin-key', type=str, default='', help='API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key.')
|
||||||
|
group.add_argument('--nowebui', action='store_true', help='Do not launch the Gradio UI. Useful for launching the API in standalone mode.')
|
||||||
|
|
||||||
# Multimodal
|
# Multimodal
|
||||||
parser.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.')
|
group = parser.add_argument_group('Multimodal')
|
||||||
|
group.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.')
|
||||||
|
|
||||||
# Deprecated parameters
|
# Deprecated parameters
|
||||||
parser.add_argument('--notebook', action='store_true', help='DEPRECATED')
|
group = parser.add_argument_group('Deprecated')
|
||||||
parser.add_argument('--chat', action='store_true', help='DEPRECATED')
|
group.add_argument('--notebook', action='store_true', help='DEPRECATED')
|
||||||
parser.add_argument('--no-stream', action='store_true', help='DEPRECATED')
|
group.add_argument('--chat', action='store_true', help='DEPRECATED')
|
||||||
parser.add_argument('--mul_mat_q', action='store_true', help='DEPRECATED')
|
group.add_argument('--no-stream', action='store_true', help='DEPRECATED')
|
||||||
parser.add_argument('--api-blocking-port', type=int, default=5000, help='DEPRECATED')
|
group.add_argument('--mul_mat_q', action='store_true', help='DEPRECATED')
|
||||||
parser.add_argument('--api-streaming-port', type=int, default=5005, help='DEPRECATED')
|
group.add_argument('--api-blocking-port', type=int, default=5000, help='DEPRECATED')
|
||||||
parser.add_argument('--llama_cpp_seed', type=int, default=0, help='DEPRECATED')
|
group.add_argument('--api-streaming-port', type=int, default=5005, help='DEPRECATED')
|
||||||
parser.add_argument('--use_fast', action='store_true', help='DEPRECATED')
|
group.add_argument('--llama_cpp_seed', type=int, default=0, help='DEPRECATED')
|
||||||
|
group.add_argument('--use_fast', action='store_true', help='DEPRECATED')
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
args_defaults = parser.parse_args([])
|
args_defaults = parser.parse_args([])
|
||||||
|
@ -77,6 +77,10 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
|
|||||||
state = copy.deepcopy(state)
|
state = copy.deepcopy(state)
|
||||||
state['stream'] = True
|
state['stream'] = True
|
||||||
|
|
||||||
|
min_update_interval = 0
|
||||||
|
if state.get('max_updates_second', 0) > 0:
|
||||||
|
min_update_interval = 1 / state['max_updates_second']
|
||||||
|
|
||||||
# Generate
|
# Generate
|
||||||
for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat):
|
for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat):
|
||||||
reply, stop_found = apply_stopping_strings(reply, all_stop_strings)
|
reply, stop_found = apply_stopping_strings(reply, all_stop_strings)
|
||||||
@ -94,10 +98,9 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
|
|||||||
last_update = time.time()
|
last_update = time.time()
|
||||||
yield reply
|
yield reply
|
||||||
|
|
||||||
# Limit updates to 24 or 5 per second to avoid lag in the Gradio UI
|
# Limit updates to avoid lag in the Gradio UI
|
||||||
# API updates are not limited
|
# API updates are not limited
|
||||||
else:
|
else:
|
||||||
min_update_interval = 0 if not for_ui else 0.2 if (shared.args.listen or shared.args.share) else 0.0417
|
|
||||||
if cur_time - last_update > min_update_interval:
|
if cur_time - last_update > min_update_interval:
|
||||||
last_update = cur_time
|
last_update = cur_time
|
||||||
yield reply
|
yield reply
|
||||||
@ -265,7 +268,14 @@ def apply_stopping_strings(reply, all_stop_strings):
|
|||||||
|
|
||||||
def get_reply_from_output_ids(output_ids, state, starting_from=0):
|
def get_reply_from_output_ids(output_ids, state, starting_from=0):
|
||||||
reply = decode(output_ids[starting_from:], state['skip_special_tokens'])
|
reply = decode(output_ids[starting_from:], state['skip_special_tokens'])
|
||||||
if (hasattr(shared.tokenizer, 'convert_ids_to_tokens') and len(output_ids) > starting_from and shared.tokenizer.convert_ids_to_tokens(int(output_ids[starting_from])).startswith('▁')) and not reply.startswith(' '):
|
|
||||||
|
# Handle tokenizers that do not add the leading space for the first token
|
||||||
|
if (hasattr(shared.tokenizer, 'convert_ids_to_tokens') and len(output_ids) > starting_from) and not reply.startswith(' '):
|
||||||
|
first_token = shared.tokenizer.convert_ids_to_tokens(int(output_ids[starting_from]))
|
||||||
|
if isinstance(first_token, (bytes,)):
|
||||||
|
first_token = first_token.decode('utf8')
|
||||||
|
|
||||||
|
if first_token.startswith('▁'):
|
||||||
reply = ' ' + reply
|
reply = ' ' + reply
|
||||||
|
|
||||||
return reply
|
return reply
|
||||||
|
@ -110,6 +110,7 @@ def list_interface_input_elements():
|
|||||||
'max_new_tokens',
|
'max_new_tokens',
|
||||||
'auto_max_new_tokens',
|
'auto_max_new_tokens',
|
||||||
'max_tokens_second',
|
'max_tokens_second',
|
||||||
|
'max_updates_second',
|
||||||
'seed',
|
'seed',
|
||||||
'temperature',
|
'temperature',
|
||||||
'temperature_last',
|
'temperature_last',
|
||||||
|
@ -66,7 +66,9 @@ def create_ui(default_preset):
|
|||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
shared.gradio['truncation_length'] = gr.Slider(value=get_truncation_length(), minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=256, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
|
shared.gradio['truncation_length'] = gr.Slider(value=get_truncation_length(), minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=256, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
|
||||||
shared.gradio['max_tokens_second'] = gr.Slider(value=shared.settings['max_tokens_second'], minimum=0, maximum=20, step=1, label='Maximum number of tokens/second', info='To make text readable in real time.')
|
shared.gradio['max_tokens_second'] = gr.Slider(value=shared.settings['max_tokens_second'], minimum=0, maximum=20, step=1, label='Maximum tokens/second', info='To make text readable in real time.')
|
||||||
|
shared.gradio['max_updates_second'] = gr.Slider(value=shared.settings['max_updates_second'], minimum=0, maximum=20, step=1, label='Maximum UI updates/second', info='Set this if you experience lag in the UI during streaming.')
|
||||||
|
|
||||||
shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas.', placeholder='"\\n", "\\nYou:"')
|
shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas.', placeholder='"\\n", "\\nYou:"')
|
||||||
shared.gradio['custom_token_bans'] = gr.Textbox(value=shared.settings['custom_token_bans'] or None, label='Custom token bans', info='Specific token IDs to ban from generating, comma-separated. The IDs can be found in the Default or Notebook tab.')
|
shared.gradio['custom_token_bans'] = gr.Textbox(value=shared.settings['custom_token_bans'] or None, label='Custom token bans', info='Specific token IDs to ban from generating, comma-separated. The IDs can be found in the Default or Notebook tab.')
|
||||||
|
|
||||||
|
@ -5,6 +5,7 @@ einops
|
|||||||
exllamav2==0.0.11; platform_system != "Darwin" and platform_machine != "x86_64"
|
exllamav2==0.0.11; platform_system != "Darwin" and platform_machine != "x86_64"
|
||||||
gradio==3.50.*
|
gradio==3.50.*
|
||||||
hqq==0.1.1.post1
|
hqq==0.1.1.post1
|
||||||
|
lm_eval==0.3.0
|
||||||
markdown
|
markdown
|
||||||
numpy==1.24.*
|
numpy==1.24.*
|
||||||
optimum==1.16.*
|
optimum==1.16.*
|
||||||
|
@ -5,6 +5,7 @@ einops
|
|||||||
exllamav2==0.0.11; platform_system == "Windows" or python_version < "3.10" or python_version > "3.11" or platform_machine != "x86_64"
|
exllamav2==0.0.11; platform_system == "Windows" or python_version < "3.10" or python_version > "3.11" or platform_machine != "x86_64"
|
||||||
gradio==3.50.*
|
gradio==3.50.*
|
||||||
hqq==0.1.1.post1
|
hqq==0.1.1.post1
|
||||||
|
lm_eval==0.3.0
|
||||||
markdown
|
markdown
|
||||||
numpy==1.24.*
|
numpy==1.24.*
|
||||||
optimum==1.16.*
|
optimum==1.16.*
|
||||||
|
@ -5,6 +5,7 @@ einops
|
|||||||
exllamav2==0.0.11; platform_system == "Windows" or python_version < "3.10" or python_version > "3.11" or platform_machine != "x86_64"
|
exllamav2==0.0.11; platform_system == "Windows" or python_version < "3.10" or python_version > "3.11" or platform_machine != "x86_64"
|
||||||
gradio==3.50.*
|
gradio==3.50.*
|
||||||
hqq==0.1.1.post1
|
hqq==0.1.1.post1
|
||||||
|
lm_eval==0.3.0
|
||||||
markdown
|
markdown
|
||||||
numpy==1.24.*
|
numpy==1.24.*
|
||||||
optimum==1.16.*
|
optimum==1.16.*
|
||||||
|
@ -5,6 +5,7 @@ einops
|
|||||||
exllamav2==0.0.11
|
exllamav2==0.0.11
|
||||||
gradio==3.50.*
|
gradio==3.50.*
|
||||||
hqq==0.1.1.post1
|
hqq==0.1.1.post1
|
||||||
|
lm_eval==0.3.0
|
||||||
markdown
|
markdown
|
||||||
numpy==1.24.*
|
numpy==1.24.*
|
||||||
optimum==1.16.*
|
optimum==1.16.*
|
||||||
|
@ -5,6 +5,7 @@ einops
|
|||||||
exllamav2==0.0.11
|
exllamav2==0.0.11
|
||||||
gradio==3.50.*
|
gradio==3.50.*
|
||||||
hqq==0.1.1.post1
|
hqq==0.1.1.post1
|
||||||
|
lm_eval==0.3.0
|
||||||
markdown
|
markdown
|
||||||
numpy==1.24.*
|
numpy==1.24.*
|
||||||
optimum==1.16.*
|
optimum==1.16.*
|
||||||
|
@ -5,6 +5,7 @@ einops
|
|||||||
exllamav2==0.0.11
|
exllamav2==0.0.11
|
||||||
gradio==3.50.*
|
gradio==3.50.*
|
||||||
hqq==0.1.1.post1
|
hqq==0.1.1.post1
|
||||||
|
lm_eval==0.3.0
|
||||||
markdown
|
markdown
|
||||||
numpy==1.24.*
|
numpy==1.24.*
|
||||||
optimum==1.16.*
|
optimum==1.16.*
|
||||||
|
@ -5,6 +5,7 @@ einops
|
|||||||
exllamav2==0.0.11
|
exllamav2==0.0.11
|
||||||
gradio==3.50.*
|
gradio==3.50.*
|
||||||
hqq==0.1.1.post1
|
hqq==0.1.1.post1
|
||||||
|
lm_eval==0.3.0
|
||||||
markdown
|
markdown
|
||||||
numpy==1.24.*
|
numpy==1.24.*
|
||||||
optimum==1.16.*
|
optimum==1.16.*
|
||||||
|
@ -5,6 +5,7 @@ einops
|
|||||||
exllamav2==0.0.11; platform_system != "Darwin" and platform_machine != "x86_64"
|
exllamav2==0.0.11; platform_system != "Darwin" and platform_machine != "x86_64"
|
||||||
gradio==3.50.*
|
gradio==3.50.*
|
||||||
hqq==0.1.1.post1
|
hqq==0.1.1.post1
|
||||||
|
lm_eval==0.3.0
|
||||||
markdown
|
markdown
|
||||||
numpy==1.24.*
|
numpy==1.24.*
|
||||||
optimum==1.16.*
|
optimum==1.16.*
|
||||||
|
@ -5,6 +5,7 @@ einops
|
|||||||
exllamav2==0.0.11
|
exllamav2==0.0.11
|
||||||
gradio==3.50.*
|
gradio==3.50.*
|
||||||
hqq==0.1.1.post1
|
hqq==0.1.1.post1
|
||||||
|
lm_eval==0.3.0
|
||||||
markdown
|
markdown
|
||||||
numpy==1.24.*
|
numpy==1.24.*
|
||||||
optimum==1.16.*
|
optimum==1.16.*
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
import os
|
import os
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
import accelerate # This early import makes Intel GPUs happy
|
import accelerate # This early import makes Intel GPUs happy
|
||||||
|
|
||||||
import modules.one_click_installer_check
|
import modules.one_click_installer_check
|
||||||
@ -36,7 +38,6 @@ import yaml
|
|||||||
import modules.extensions as extensions_module
|
import modules.extensions as extensions_module
|
||||||
from modules import (
|
from modules import (
|
||||||
chat,
|
chat,
|
||||||
shared,
|
|
||||||
training,
|
training,
|
||||||
ui,
|
ui,
|
||||||
ui_chat,
|
ui_chat,
|
||||||
|
Loading…
Reference in New Issue
Block a user