mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-01 00:39:09 +01:00
commit
4b25acf58f
@ -237,7 +237,7 @@ List of command-line flags
|
||||
| `--no_use_fast` | Set use_fast=False while loading the tokenizer (it's True by default). Use this if you have any problems related to use_fast. |
|
||||
| `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. |
|
||||
|
||||
#### Accelerate 4-bit
|
||||
#### bitsandbytes 4-bit
|
||||
|
||||
⚠️ Requires minimum compute of 7.0 on Windows at the moment.
|
||||
|
||||
|
@ -168,8 +168,9 @@ loaders_and_params = OrderedDict({
|
||||
]
|
||||
})
|
||||
|
||||
loaders_samplers = {
|
||||
'Transformers': {
|
||||
|
||||
def transformers_samplers():
|
||||
return {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'top_p',
|
||||
@ -205,7 +206,16 @@ loaders_samplers = {
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
loaders_samplers = {
|
||||
'Transformers': transformers_samplers(),
|
||||
'AutoGPTQ': transformers_samplers(),
|
||||
'GPTQ-for-LLaMa': transformers_samplers(),
|
||||
'AutoAWQ': transformers_samplers(),
|
||||
'QuIP#': transformers_samplers(),
|
||||
'HQQ': transformers_samplers(),
|
||||
'ExLlama_HF': {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
@ -306,80 +316,6 @@ loaders_samplers = {
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
'AutoGPTQ': {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
'typical_p',
|
||||
'epsilon_cutoff',
|
||||
'eta_cutoff',
|
||||
'tfs',
|
||||
'top_a',
|
||||
'repetition_penalty',
|
||||
'presence_penalty',
|
||||
'frequency_penalty',
|
||||
'repetition_penalty_range',
|
||||
'encoder_repetition_penalty',
|
||||
'no_repeat_ngram_size',
|
||||
'min_length',
|
||||
'seed',
|
||||
'do_sample',
|
||||
'penalty_alpha',
|
||||
'num_beams',
|
||||
'length_penalty',
|
||||
'early_stopping',
|
||||
'mirostat_mode',
|
||||
'mirostat_tau',
|
||||
'mirostat_eta',
|
||||
'grammar_file_row',
|
||||
'grammar_string',
|
||||
'guidance_scale',
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'custom_token_bans',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
'GPTQ-for-LLaMa': {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
'typical_p',
|
||||
'epsilon_cutoff',
|
||||
'eta_cutoff',
|
||||
'tfs',
|
||||
'top_a',
|
||||
'repetition_penalty',
|
||||
'presence_penalty',
|
||||
'frequency_penalty',
|
||||
'repetition_penalty_range',
|
||||
'encoder_repetition_penalty',
|
||||
'no_repeat_ngram_size',
|
||||
'min_length',
|
||||
'seed',
|
||||
'do_sample',
|
||||
'penalty_alpha',
|
||||
'num_beams',
|
||||
'length_penalty',
|
||||
'early_stopping',
|
||||
'mirostat_mode',
|
||||
'mirostat_tau',
|
||||
'mirostat_eta',
|
||||
'grammar_file_row',
|
||||
'grammar_string',
|
||||
'guidance_scale',
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'custom_token_bans',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
'llama.cpp': {
|
||||
'temperature',
|
||||
'top_p',
|
||||
@ -439,117 +375,6 @@ loaders_samplers = {
|
||||
'repetition_penalty',
|
||||
'repetition_penalty_range',
|
||||
},
|
||||
'AutoAWQ': {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
'typical_p',
|
||||
'epsilon_cutoff',
|
||||
'eta_cutoff',
|
||||
'tfs',
|
||||
'top_a',
|
||||
'repetition_penalty',
|
||||
'presence_penalty',
|
||||
'frequency_penalty',
|
||||
'repetition_penalty_range',
|
||||
'encoder_repetition_penalty',
|
||||
'no_repeat_ngram_size',
|
||||
'min_length',
|
||||
'seed',
|
||||
'do_sample',
|
||||
'penalty_alpha',
|
||||
'num_beams',
|
||||
'length_penalty',
|
||||
'early_stopping',
|
||||
'mirostat_mode',
|
||||
'mirostat_tau',
|
||||
'mirostat_eta',
|
||||
'grammar_file_row',
|
||||
'grammar_string',
|
||||
'guidance_scale',
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'custom_token_bans',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
'QuIP#': {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
'typical_p',
|
||||
'epsilon_cutoff',
|
||||
'eta_cutoff',
|
||||
'tfs',
|
||||
'top_a',
|
||||
'repetition_penalty',
|
||||
'presence_penalty',
|
||||
'frequency_penalty',
|
||||
'repetition_penalty_range',
|
||||
'encoder_repetition_penalty',
|
||||
'no_repeat_ngram_size',
|
||||
'min_length',
|
||||
'seed',
|
||||
'do_sample',
|
||||
'penalty_alpha',
|
||||
'num_beams',
|
||||
'length_penalty',
|
||||
'early_stopping',
|
||||
'mirostat_mode',
|
||||
'mirostat_tau',
|
||||
'mirostat_eta',
|
||||
'grammar_file_row',
|
||||
'grammar_string',
|
||||
'guidance_scale',
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'custom_token_bans',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
'HQQ': {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
'typical_p',
|
||||
'epsilon_cutoff',
|
||||
'eta_cutoff',
|
||||
'tfs',
|
||||
'top_a',
|
||||
'repetition_penalty',
|
||||
'presence_penalty',
|
||||
'frequency_penalty',
|
||||
'repetition_penalty_range',
|
||||
'encoder_repetition_penalty',
|
||||
'no_repeat_ngram_size',
|
||||
'min_length',
|
||||
'seed',
|
||||
'do_sample',
|
||||
'penalty_alpha',
|
||||
'num_beams',
|
||||
'length_penalty',
|
||||
'early_stopping',
|
||||
'mirostat_mode',
|
||||
'mirostat_tau',
|
||||
'mirostat_eta',
|
||||
'grammar_file_row',
|
||||
'grammar_string',
|
||||
'guidance_scale',
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'custom_token_bans',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
}
|
||||
|
||||
loaders_model_types = {
|
||||
|
@ -64,137 +64,155 @@ settings = {
|
||||
'default_extensions': ['gallery'],
|
||||
}
|
||||
|
||||
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54))
|
||||
|
||||
# Parser copied from https://github.com/vladmandic/automatic
|
||||
parser = argparse.ArgumentParser(description="Text generation web UI", conflict_handler='resolve', add_help=True, formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=55, indent_increment=2, width=200))
|
||||
|
||||
# Basic settings
|
||||
parser.add_argument('--multi-user', action='store_true', help='Multi-user mode. Chat histories are not saved or automatically loaded. Warning: this is likely not safe for sharing publicly.')
|
||||
parser.add_argument('--character', type=str, help='The name of the character to load in chat mode by default.')
|
||||
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
|
||||
parser.add_argument('--lora', type=str, nargs='+', help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.')
|
||||
parser.add_argument('--model-dir', type=str, default='models/', help='Path to directory with all the models.')
|
||||
parser.add_argument('--lora-dir', type=str, default='loras/', help='Path to directory with all the loras.')
|
||||
parser.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.')
|
||||
parser.add_argument('--settings', type=str, help='Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml, this file will be loaded by default without the need to use the --settings flag.')
|
||||
parser.add_argument('--extensions', type=str, nargs='+', help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
|
||||
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
||||
parser.add_argument('--chat-buttons', action='store_true', help='Show buttons on the chat tab instead of a hover menu.')
|
||||
group = parser.add_argument_group('Basic settings')
|
||||
group.add_argument('--multi-user', action='store_true', help='Multi-user mode. Chat histories are not saved or automatically loaded. Warning: this is likely not safe for sharing publicly.')
|
||||
group.add_argument('--character', type=str, help='The name of the character to load in chat mode by default.')
|
||||
group.add_argument('--model', type=str, help='Name of the model to load by default.')
|
||||
group.add_argument('--lora', type=str, nargs='+', help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.')
|
||||
group.add_argument('--model-dir', type=str, default='models/', help='Path to directory with all the models.')
|
||||
group.add_argument('--lora-dir', type=str, default='loras/', help='Path to directory with all the loras.')
|
||||
group.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.')
|
||||
group.add_argument('--settings', type=str, help='Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml, this file will be loaded by default without the need to use the --settings flag.')
|
||||
group.add_argument('--extensions', type=str, nargs='+', help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
|
||||
group.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
||||
group.add_argument('--chat-buttons', action='store_true', help='Show buttons on the chat tab instead of a hover menu.')
|
||||
|
||||
# Model loader
|
||||
parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlama_HF, ExLlamav2_HF, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ExLlama, ExLlamav2, ctransformers, QuIP#.')
|
||||
group = parser.add_argument_group('Model loader')
|
||||
group.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlama_HF, ExLlamav2_HF, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ExLlama, ExLlamav2, ctransformers, QuIP#.')
|
||||
|
||||
# Accelerate/transformers
|
||||
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
|
||||
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
||||
parser.add_argument('--gpu-memory', type=str, nargs='+', help='Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.')
|
||||
parser.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.')
|
||||
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
||||
parser.add_argument('--disk-cache-dir', type=str, default='cache', help='Directory to save the disk cache to. Defaults to "cache".')
|
||||
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).')
|
||||
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
||||
parser.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.')
|
||||
parser.add_argument('--xformers', action='store_true', help='Use xformer\'s memory efficient attention. This is really old and probably doesn\'t do anything.')
|
||||
parser.add_argument('--sdp-attention', action='store_true', help='Use PyTorch 2.0\'s SDP attention. Same as above.')
|
||||
parser.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.')
|
||||
parser.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.')
|
||||
parser.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.')
|
||||
parser.add_argument('--use_flash_attention_2', action='store_true', help='Set use_flash_attention_2=True while loading the model.')
|
||||
# Transformers/Accelerate
|
||||
group = parser.add_argument_group('Transformers/Accelerate')
|
||||
group.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
|
||||
group.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
||||
group.add_argument('--gpu-memory', type=str, nargs='+', help='Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.')
|
||||
group.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.')
|
||||
group.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
||||
group.add_argument('--disk-cache-dir', type=str, default='cache', help='Directory to save the disk cache to. Defaults to "cache".')
|
||||
group.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).')
|
||||
group.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
||||
group.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.')
|
||||
group.add_argument('--xformers', action='store_true', help='Use xformer\'s memory efficient attention. This is really old and probably doesn\'t do anything.')
|
||||
group.add_argument('--sdp-attention', action='store_true', help='Use PyTorch 2.0\'s SDP attention. Same as above.')
|
||||
group.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.')
|
||||
group.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.')
|
||||
group.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.')
|
||||
group.add_argument('--use_flash_attention_2', action='store_true', help='Set use_flash_attention_2=True while loading the model.')
|
||||
|
||||
# Accelerate 4-bit
|
||||
parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision (using bitsandbytes).')
|
||||
parser.add_argument('--use_double_quant', action='store_true', help='use_double_quant for 4-bit.')
|
||||
parser.add_argument('--compute_dtype', type=str, default='float16', help='compute dtype for 4-bit. Valid options: bfloat16, float16, float32.')
|
||||
parser.add_argument('--quant_type', type=str, default='nf4', help='quant_type for 4-bit. Valid options: nf4, fp4.')
|
||||
# bitsandbytes 4-bit
|
||||
group = parser.add_argument_group('bitsandbytes 4-bit')
|
||||
group.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision (using bitsandbytes).')
|
||||
group.add_argument('--use_double_quant', action='store_true', help='use_double_quant for 4-bit.')
|
||||
group.add_argument('--compute_dtype', type=str, default='float16', help='compute dtype for 4-bit. Valid options: bfloat16, float16, float32.')
|
||||
group.add_argument('--quant_type', type=str, default='nf4', help='quant_type for 4-bit. Valid options: nf4, fp4.')
|
||||
|
||||
# llama.cpp
|
||||
parser.add_argument('--tensorcores', action='store_true', help='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.')
|
||||
parser.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.')
|
||||
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
|
||||
parser.add_argument('--threads-batch', type=int, default=0, help='Number of threads to use for batches/prompt processing.')
|
||||
parser.add_argument('--no_mul_mat_q', action='store_true', help='Disable the mulmat kernels.')
|
||||
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
|
||||
parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
|
||||
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
|
||||
parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
|
||||
parser.add_argument('--tensor_split', type=str, default=None, help='Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17.')
|
||||
parser.add_argument('--numa', action='store_true', help='Activate NUMA task allocation for llama.cpp.')
|
||||
parser.add_argument('--logits_all', action='store_true', help='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
|
||||
parser.add_argument('--no_offload_kqv', action='store_true', help='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.')
|
||||
parser.add_argument('--cache-capacity', type=str, help='Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
|
||||
group = parser.add_argument_group('llama.cpp')
|
||||
group.add_argument('--tensorcores', action='store_true', help='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.')
|
||||
group.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.')
|
||||
group.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
|
||||
group.add_argument('--threads-batch', type=int, default=0, help='Number of threads to use for batches/prompt processing.')
|
||||
group.add_argument('--no_mul_mat_q', action='store_true', help='Disable the mulmat kernels.')
|
||||
group.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
|
||||
group.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
|
||||
group.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
|
||||
group.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
|
||||
group.add_argument('--tensor_split', type=str, default=None, help='Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17.')
|
||||
group.add_argument('--numa', action='store_true', help='Activate NUMA task allocation for llama.cpp.')
|
||||
group.add_argument('--logits_all', action='store_true', help='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
|
||||
group.add_argument('--no_offload_kqv', action='store_true', help='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.')
|
||||
group.add_argument('--cache-capacity', type=str, help='Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
|
||||
|
||||
# ExLlama
|
||||
parser.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.')
|
||||
parser.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.')
|
||||
parser.add_argument('--cfg-cache', action='store_true', help='ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.')
|
||||
parser.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.')
|
||||
parser.add_argument('--cache_8bit', action='store_true', help='Use 8-bit cache to save VRAM.')
|
||||
parser.add_argument('--num_experts_per_token', type=int, default=2, help='Number of experts to use for generation. Applies to MoE models like Mixtral.')
|
||||
group = parser.add_argument_group('ExLlama')
|
||||
group.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.')
|
||||
group.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.')
|
||||
group.add_argument('--cfg-cache', action='store_true', help='ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.')
|
||||
group.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.')
|
||||
group.add_argument('--cache_8bit', action='store_true', help='Use 8-bit cache to save VRAM.')
|
||||
group.add_argument('--num_experts_per_token', type=int, default=2, help='Number of experts to use for generation. Applies to MoE models like Mixtral.')
|
||||
|
||||
# AutoGPTQ
|
||||
parser.add_argument('--triton', action='store_true', help='Use triton.')
|
||||
parser.add_argument('--no_inject_fused_attention', action='store_true', help='Disable the use of fused attention, which will use less VRAM at the cost of slower inference.')
|
||||
parser.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference.')
|
||||
parser.add_argument('--no_use_cuda_fp16', action='store_true', help='This can make models faster on some systems.')
|
||||
parser.add_argument('--desc_act', action='store_true', help='For models that do not have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.')
|
||||
parser.add_argument('--disable_exllama', action='store_true', help='Disable ExLlama kernel, which can improve inference speed on some systems.')
|
||||
parser.add_argument('--disable_exllamav2', action='store_true', help='Disable ExLlamav2 kernel.')
|
||||
group = parser.add_argument_group('AutoGPTQ')
|
||||
group.add_argument('--triton', action='store_true', help='Use triton.')
|
||||
group.add_argument('--no_inject_fused_attention', action='store_true', help='Disable the use of fused attention, which will use less VRAM at the cost of slower inference.')
|
||||
group.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference.')
|
||||
group.add_argument('--no_use_cuda_fp16', action='store_true', help='This can make models faster on some systems.')
|
||||
group.add_argument('--desc_act', action='store_true', help='For models that do not have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.')
|
||||
group.add_argument('--disable_exllama', action='store_true', help='Disable ExLlama kernel, which can improve inference speed on some systems.')
|
||||
group.add_argument('--disable_exllamav2', action='store_true', help='Disable ExLlamav2 kernel.')
|
||||
|
||||
# GPTQ-for-LLaMa
|
||||
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
||||
parser.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
|
||||
parser.add_argument('--groupsize', type=int, default=-1, help='Group size.')
|
||||
parser.add_argument('--pre_layer', type=int, nargs='+', help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.')
|
||||
parser.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.')
|
||||
parser.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.')
|
||||
group = parser.add_argument_group('GPTQ-for-LLaMa')
|
||||
group.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
||||
group.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
|
||||
group.add_argument('--groupsize', type=int, default=-1, help='Group size.')
|
||||
group.add_argument('--pre_layer', type=int, nargs='+', help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.')
|
||||
group.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.')
|
||||
group.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.')
|
||||
|
||||
# HQQ
|
||||
parser.add_argument('--hqq-backend', type=str, default='PYTORCH_COMPILE', help='Backend for the HQQ loader. Valid options: PYTORCH, PYTORCH_COMPILE, ATEN.')
|
||||
group = parser.add_argument_group('HQQ')
|
||||
group.add_argument('--hqq-backend', type=str, default='PYTORCH_COMPILE', help='Backend for the HQQ loader. Valid options: PYTORCH, PYTORCH_COMPILE, ATEN.')
|
||||
|
||||
# DeepSpeed
|
||||
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
|
||||
parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
||||
parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
||||
group = parser.add_argument_group('DeepSpeed')
|
||||
group.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
|
||||
group.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
||||
group.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
||||
|
||||
# RWKV
|
||||
parser.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
|
||||
parser.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
|
||||
group = parser.add_argument_group('RWKV')
|
||||
group.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
|
||||
group.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
|
||||
|
||||
# RoPE
|
||||
parser.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
|
||||
parser.add_argument('--rope_freq_base', type=int, default=0, help='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63).')
|
||||
parser.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.")
|
||||
group = parser.add_argument_group('RoPE')
|
||||
group.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
|
||||
group.add_argument('--rope_freq_base', type=int, default=0, help='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63).')
|
||||
group.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.")
|
||||
|
||||
# Gradio
|
||||
parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
|
||||
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
||||
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
|
||||
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
|
||||
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
|
||||
parser.add_argument('--gradio-auth', type=str, help='Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3".', default=None)
|
||||
parser.add_argument('--gradio-auth-path', type=str, help='Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above.', default=None)
|
||||
parser.add_argument('--ssl-keyfile', type=str, help='The path to the SSL certificate key file.', default=None)
|
||||
parser.add_argument('--ssl-certfile', type=str, help='The path to the SSL certificate cert file.', default=None)
|
||||
group = parser.add_argument_group('Gradio')
|
||||
group.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
|
||||
group.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
||||
group.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
|
||||
group.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
|
||||
group.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
|
||||
group.add_argument('--gradio-auth', type=str, help='Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3".', default=None)
|
||||
group.add_argument('--gradio-auth-path', type=str, help='Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above.', default=None)
|
||||
group.add_argument('--ssl-keyfile', type=str, help='The path to the SSL certificate key file.', default=None)
|
||||
group.add_argument('--ssl-certfile', type=str, help='The path to the SSL certificate cert file.', default=None)
|
||||
|
||||
# API
|
||||
parser.add_argument('--api', action='store_true', help='Enable the API extension.')
|
||||
parser.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.')
|
||||
parser.add_argument('--public-api-id', type=str, help='Tunnel ID for named Cloudflare Tunnel. Use together with public-api option.', default=None)
|
||||
parser.add_argument('--api-port', type=int, default=5000, help='The listening port for the API.')
|
||||
parser.add_argument('--api-key', type=str, default='', help='API authentication key.')
|
||||
parser.add_argument('--admin-key', type=str, default='', help='API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key.')
|
||||
parser.add_argument('--nowebui', action='store_true', help='Do not launch the Gradio UI. Useful for launching the API in standalone mode.')
|
||||
group = parser.add_argument_group('API')
|
||||
group.add_argument('--api', action='store_true', help='Enable the API extension.')
|
||||
group.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.')
|
||||
group.add_argument('--public-api-id', type=str, help='Tunnel ID for named Cloudflare Tunnel. Use together with public-api option.', default=None)
|
||||
group.add_argument('--api-port', type=int, default=5000, help='The listening port for the API.')
|
||||
group.add_argument('--api-key', type=str, default='', help='API authentication key.')
|
||||
group.add_argument('--admin-key', type=str, default='', help='API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key.')
|
||||
group.add_argument('--nowebui', action='store_true', help='Do not launch the Gradio UI. Useful for launching the API in standalone mode.')
|
||||
|
||||
# Multimodal
|
||||
parser.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.')
|
||||
group = parser.add_argument_group('Multimodal')
|
||||
group.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.')
|
||||
|
||||
# Deprecated parameters
|
||||
parser.add_argument('--notebook', action='store_true', help='DEPRECATED')
|
||||
parser.add_argument('--chat', action='store_true', help='DEPRECATED')
|
||||
parser.add_argument('--no-stream', action='store_true', help='DEPRECATED')
|
||||
parser.add_argument('--mul_mat_q', action='store_true', help='DEPRECATED')
|
||||
parser.add_argument('--api-blocking-port', type=int, default=5000, help='DEPRECATED')
|
||||
parser.add_argument('--api-streaming-port', type=int, default=5005, help='DEPRECATED')
|
||||
parser.add_argument('--llama_cpp_seed', type=int, default=0, help='DEPRECATED')
|
||||
parser.add_argument('--use_fast', action='store_true', help='DEPRECATED')
|
||||
group = parser.add_argument_group('Deprecated')
|
||||
group.add_argument('--notebook', action='store_true', help='DEPRECATED')
|
||||
group.add_argument('--chat', action='store_true', help='DEPRECATED')
|
||||
group.add_argument('--no-stream', action='store_true', help='DEPRECATED')
|
||||
group.add_argument('--mul_mat_q', action='store_true', help='DEPRECATED')
|
||||
group.add_argument('--api-blocking-port', type=int, default=5000, help='DEPRECATED')
|
||||
group.add_argument('--api-streaming-port', type=int, default=5005, help='DEPRECATED')
|
||||
group.add_argument('--llama_cpp_seed', type=int, default=0, help='DEPRECATED')
|
||||
group.add_argument('--use_fast', action='store_true', help='DEPRECATED')
|
||||
|
||||
args = parser.parse_args()
|
||||
args_defaults = parser.parse_args([])
|
||||
|
@ -1,6 +1,8 @@
|
||||
import os
|
||||
import warnings
|
||||
|
||||
from modules import shared
|
||||
|
||||
import accelerate # This early import makes Intel GPUs happy
|
||||
|
||||
import modules.one_click_installer_check
|
||||
@ -36,7 +38,6 @@ import yaml
|
||||
import modules.extensions as extensions_module
|
||||
from modules import (
|
||||
chat,
|
||||
shared,
|
||||
training,
|
||||
ui,
|
||||
ui_chat,
|
||||
|
Loading…
Reference in New Issue
Block a user