Merge pull request #5039 from oobabooga/dev

Merge dev branch
This commit is contained in:
oobabooga 2023-12-21 20:22:48 -03:00 committed by GitHub
commit 4b25acf58f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 135 additions and 291 deletions

View File

@ -237,7 +237,7 @@ List of command-line flags
| `--no_use_fast` | Set use_fast=False while loading the tokenizer (it's True by default). Use this if you have any problems related to use_fast. | | `--no_use_fast` | Set use_fast=False while loading the tokenizer (it's True by default). Use this if you have any problems related to use_fast. |
| `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. | | `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. |
#### Accelerate 4-bit #### bitsandbytes 4-bit
⚠️ Requires minimum compute of 7.0 on Windows at the moment. ⚠️ Requires minimum compute of 7.0 on Windows at the moment.

View File

@ -168,8 +168,9 @@ loaders_and_params = OrderedDict({
] ]
}) })
loaders_samplers = {
'Transformers': { def transformers_samplers():
return {
'temperature', 'temperature',
'temperature_last', 'temperature_last',
'top_p', 'top_p',
@ -205,7 +206,16 @@ loaders_samplers = {
'add_bos_token', 'add_bos_token',
'skip_special_tokens', 'skip_special_tokens',
'auto_max_new_tokens', 'auto_max_new_tokens',
}, }
loaders_samplers = {
'Transformers': transformers_samplers(),
'AutoGPTQ': transformers_samplers(),
'GPTQ-for-LLaMa': transformers_samplers(),
'AutoAWQ': transformers_samplers(),
'QuIP#': transformers_samplers(),
'HQQ': transformers_samplers(),
'ExLlama_HF': { 'ExLlama_HF': {
'temperature', 'temperature',
'temperature_last', 'temperature_last',
@ -306,80 +316,6 @@ loaders_samplers = {
'skip_special_tokens', 'skip_special_tokens',
'auto_max_new_tokens', 'auto_max_new_tokens',
}, },
'AutoGPTQ': {
'temperature',
'temperature_last',
'top_p',
'min_p',
'top_k',
'typical_p',
'epsilon_cutoff',
'eta_cutoff',
'tfs',
'top_a',
'repetition_penalty',
'presence_penalty',
'frequency_penalty',
'repetition_penalty_range',
'encoder_repetition_penalty',
'no_repeat_ngram_size',
'min_length',
'seed',
'do_sample',
'penalty_alpha',
'num_beams',
'length_penalty',
'early_stopping',
'mirostat_mode',
'mirostat_tau',
'mirostat_eta',
'grammar_file_row',
'grammar_string',
'guidance_scale',
'negative_prompt',
'ban_eos_token',
'custom_token_bans',
'add_bos_token',
'skip_special_tokens',
'auto_max_new_tokens',
},
'GPTQ-for-LLaMa': {
'temperature',
'temperature_last',
'top_p',
'min_p',
'top_k',
'typical_p',
'epsilon_cutoff',
'eta_cutoff',
'tfs',
'top_a',
'repetition_penalty',
'presence_penalty',
'frequency_penalty',
'repetition_penalty_range',
'encoder_repetition_penalty',
'no_repeat_ngram_size',
'min_length',
'seed',
'do_sample',
'penalty_alpha',
'num_beams',
'length_penalty',
'early_stopping',
'mirostat_mode',
'mirostat_tau',
'mirostat_eta',
'grammar_file_row',
'grammar_string',
'guidance_scale',
'negative_prompt',
'ban_eos_token',
'custom_token_bans',
'add_bos_token',
'skip_special_tokens',
'auto_max_new_tokens',
},
'llama.cpp': { 'llama.cpp': {
'temperature', 'temperature',
'top_p', 'top_p',
@ -439,117 +375,6 @@ loaders_samplers = {
'repetition_penalty', 'repetition_penalty',
'repetition_penalty_range', 'repetition_penalty_range',
}, },
'AutoAWQ': {
'temperature',
'temperature_last',
'top_p',
'min_p',
'top_k',
'typical_p',
'epsilon_cutoff',
'eta_cutoff',
'tfs',
'top_a',
'repetition_penalty',
'presence_penalty',
'frequency_penalty',
'repetition_penalty_range',
'encoder_repetition_penalty',
'no_repeat_ngram_size',
'min_length',
'seed',
'do_sample',
'penalty_alpha',
'num_beams',
'length_penalty',
'early_stopping',
'mirostat_mode',
'mirostat_tau',
'mirostat_eta',
'grammar_file_row',
'grammar_string',
'guidance_scale',
'negative_prompt',
'ban_eos_token',
'custom_token_bans',
'add_bos_token',
'skip_special_tokens',
'auto_max_new_tokens',
},
'QuIP#': {
'temperature',
'temperature_last',
'top_p',
'min_p',
'top_k',
'typical_p',
'epsilon_cutoff',
'eta_cutoff',
'tfs',
'top_a',
'repetition_penalty',
'presence_penalty',
'frequency_penalty',
'repetition_penalty_range',
'encoder_repetition_penalty',
'no_repeat_ngram_size',
'min_length',
'seed',
'do_sample',
'penalty_alpha',
'num_beams',
'length_penalty',
'early_stopping',
'mirostat_mode',
'mirostat_tau',
'mirostat_eta',
'grammar_file_row',
'grammar_string',
'guidance_scale',
'negative_prompt',
'ban_eos_token',
'custom_token_bans',
'add_bos_token',
'skip_special_tokens',
'auto_max_new_tokens',
},
'HQQ': {
'temperature',
'temperature_last',
'top_p',
'min_p',
'top_k',
'typical_p',
'epsilon_cutoff',
'eta_cutoff',
'tfs',
'top_a',
'repetition_penalty',
'presence_penalty',
'frequency_penalty',
'repetition_penalty_range',
'encoder_repetition_penalty',
'no_repeat_ngram_size',
'min_length',
'seed',
'do_sample',
'penalty_alpha',
'num_beams',
'length_penalty',
'early_stopping',
'mirostat_mode',
'mirostat_tau',
'mirostat_eta',
'grammar_file_row',
'grammar_string',
'guidance_scale',
'negative_prompt',
'ban_eos_token',
'custom_token_bans',
'add_bos_token',
'skip_special_tokens',
'auto_max_new_tokens',
},
} }
loaders_model_types = { loaders_model_types = {

View File

@ -64,137 +64,155 @@ settings = {
'default_extensions': ['gallery'], 'default_extensions': ['gallery'],
} }
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54))
# Parser copied from https://github.com/vladmandic/automatic
parser = argparse.ArgumentParser(description="Text generation web UI", conflict_handler='resolve', add_help=True, formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=55, indent_increment=2, width=200))
# Basic settings # Basic settings
parser.add_argument('--multi-user', action='store_true', help='Multi-user mode. Chat histories are not saved or automatically loaded. Warning: this is likely not safe for sharing publicly.') group = parser.add_argument_group('Basic settings')
parser.add_argument('--character', type=str, help='The name of the character to load in chat mode by default.') group.add_argument('--multi-user', action='store_true', help='Multi-user mode. Chat histories are not saved or automatically loaded. Warning: this is likely not safe for sharing publicly.')
parser.add_argument('--model', type=str, help='Name of the model to load by default.') group.add_argument('--character', type=str, help='The name of the character to load in chat mode by default.')
parser.add_argument('--lora', type=str, nargs='+', help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.') group.add_argument('--model', type=str, help='Name of the model to load by default.')
parser.add_argument('--model-dir', type=str, default='models/', help='Path to directory with all the models.') group.add_argument('--lora', type=str, nargs='+', help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.')
parser.add_argument('--lora-dir', type=str, default='loras/', help='Path to directory with all the loras.') group.add_argument('--model-dir', type=str, default='models/', help='Path to directory with all the models.')
parser.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.') group.add_argument('--lora-dir', type=str, default='loras/', help='Path to directory with all the loras.')
parser.add_argument('--settings', type=str, help='Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml, this file will be loaded by default without the need to use the --settings flag.') group.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.')
parser.add_argument('--extensions', type=str, nargs='+', help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.') group.add_argument('--settings', type=str, help='Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml, this file will be loaded by default without the need to use the --settings flag.')
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.') group.add_argument('--extensions', type=str, nargs='+', help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
parser.add_argument('--chat-buttons', action='store_true', help='Show buttons on the chat tab instead of a hover menu.') group.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
group.add_argument('--chat-buttons', action='store_true', help='Show buttons on the chat tab instead of a hover menu.')
# Model loader # Model loader
parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlama_HF, ExLlamav2_HF, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ExLlama, ExLlamav2, ctransformers, QuIP#.') group = parser.add_argument_group('Model loader')
group.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlama_HF, ExLlamav2_HF, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ExLlama, ExLlamav2, ctransformers, QuIP#.')
# Accelerate/transformers # Transformers/Accelerate
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.') group = parser.add_argument_group('Transformers/Accelerate')
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.') group.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
parser.add_argument('--gpu-memory', type=str, nargs='+', help='Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.') group.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
parser.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.') group.add_argument('--gpu-memory', type=str, nargs='+', help='Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.')
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.') group.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.')
parser.add_argument('--disk-cache-dir', type=str, default='cache', help='Directory to save the disk cache to. Defaults to "cache".') group.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).') group.add_argument('--disk-cache-dir', type=str, default='cache', help='Directory to save the disk cache to. Defaults to "cache".')
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') group.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).')
parser.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.') group.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
parser.add_argument('--xformers', action='store_true', help='Use xformer\'s memory efficient attention. This is really old and probably doesn\'t do anything.') group.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.')
parser.add_argument('--sdp-attention', action='store_true', help='Use PyTorch 2.0\'s SDP attention. Same as above.') group.add_argument('--xformers', action='store_true', help='Use xformer\'s memory efficient attention. This is really old and probably doesn\'t do anything.')
parser.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.') group.add_argument('--sdp-attention', action='store_true', help='Use PyTorch 2.0\'s SDP attention. Same as above.')
parser.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.') group.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.')
parser.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.') group.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.')
parser.add_argument('--use_flash_attention_2', action='store_true', help='Set use_flash_attention_2=True while loading the model.') group.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.')
group.add_argument('--use_flash_attention_2', action='store_true', help='Set use_flash_attention_2=True while loading the model.')
# Accelerate 4-bit # bitsandbytes 4-bit
parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision (using bitsandbytes).') group = parser.add_argument_group('bitsandbytes 4-bit')
parser.add_argument('--use_double_quant', action='store_true', help='use_double_quant for 4-bit.') group.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision (using bitsandbytes).')
parser.add_argument('--compute_dtype', type=str, default='float16', help='compute dtype for 4-bit. Valid options: bfloat16, float16, float32.') group.add_argument('--use_double_quant', action='store_true', help='use_double_quant for 4-bit.')
parser.add_argument('--quant_type', type=str, default='nf4', help='quant_type for 4-bit. Valid options: nf4, fp4.') group.add_argument('--compute_dtype', type=str, default='float16', help='compute dtype for 4-bit. Valid options: bfloat16, float16, float32.')
group.add_argument('--quant_type', type=str, default='nf4', help='quant_type for 4-bit. Valid options: nf4, fp4.')
# llama.cpp # llama.cpp
parser.add_argument('--tensorcores', action='store_true', help='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.') group = parser.add_argument_group('llama.cpp')
parser.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.') group.add_argument('--tensorcores', action='store_true', help='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.')
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.') group.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.')
parser.add_argument('--threads-batch', type=int, default=0, help='Number of threads to use for batches/prompt processing.') group.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
parser.add_argument('--no_mul_mat_q', action='store_true', help='Disable the mulmat kernels.') group.add_argument('--threads-batch', type=int, default=0, help='Number of threads to use for batches/prompt processing.')
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.') group.add_argument('--no_mul_mat_q', action='store_true', help='Disable the mulmat kernels.')
parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.') group.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.') group.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.') group.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
parser.add_argument('--tensor_split', type=str, default=None, help='Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17.') group.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
parser.add_argument('--numa', action='store_true', help='Activate NUMA task allocation for llama.cpp.') group.add_argument('--tensor_split', type=str, default=None, help='Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17.')
parser.add_argument('--logits_all', action='store_true', help='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.') group.add_argument('--numa', action='store_true', help='Activate NUMA task allocation for llama.cpp.')
parser.add_argument('--no_offload_kqv', action='store_true', help='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.') group.add_argument('--logits_all', action='store_true', help='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
parser.add_argument('--cache-capacity', type=str, help='Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.') group.add_argument('--no_offload_kqv', action='store_true', help='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.')
group.add_argument('--cache-capacity', type=str, help='Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
# ExLlama # ExLlama
parser.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.') group = parser.add_argument_group('ExLlama')
parser.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.') group.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.')
parser.add_argument('--cfg-cache', action='store_true', help='ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.') group.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.')
parser.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.') group.add_argument('--cfg-cache', action='store_true', help='ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.')
parser.add_argument('--cache_8bit', action='store_true', help='Use 8-bit cache to save VRAM.') group.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.')
parser.add_argument('--num_experts_per_token', type=int, default=2, help='Number of experts to use for generation. Applies to MoE models like Mixtral.') group.add_argument('--cache_8bit', action='store_true', help='Use 8-bit cache to save VRAM.')
group.add_argument('--num_experts_per_token', type=int, default=2, help='Number of experts to use for generation. Applies to MoE models like Mixtral.')
# AutoGPTQ # AutoGPTQ
parser.add_argument('--triton', action='store_true', help='Use triton.') group = parser.add_argument_group('AutoGPTQ')
parser.add_argument('--no_inject_fused_attention', action='store_true', help='Disable the use of fused attention, which will use less VRAM at the cost of slower inference.') group.add_argument('--triton', action='store_true', help='Use triton.')
parser.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference.') group.add_argument('--no_inject_fused_attention', action='store_true', help='Disable the use of fused attention, which will use less VRAM at the cost of slower inference.')
parser.add_argument('--no_use_cuda_fp16', action='store_true', help='This can make models faster on some systems.') group.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference.')
parser.add_argument('--desc_act', action='store_true', help='For models that do not have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.') group.add_argument('--no_use_cuda_fp16', action='store_true', help='This can make models faster on some systems.')
parser.add_argument('--disable_exllama', action='store_true', help='Disable ExLlama kernel, which can improve inference speed on some systems.') group.add_argument('--desc_act', action='store_true', help='For models that do not have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.')
parser.add_argument('--disable_exllamav2', action='store_true', help='Disable ExLlamav2 kernel.') group.add_argument('--disable_exllama', action='store_true', help='Disable ExLlama kernel, which can improve inference speed on some systems.')
group.add_argument('--disable_exllamav2', action='store_true', help='Disable ExLlamav2 kernel.')
# GPTQ-for-LLaMa # GPTQ-for-LLaMa
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.') group = parser.add_argument_group('GPTQ-for-LLaMa')
parser.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.') group.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
parser.add_argument('--groupsize', type=int, default=-1, help='Group size.') group.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
parser.add_argument('--pre_layer', type=int, nargs='+', help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.') group.add_argument('--groupsize', type=int, default=-1, help='Group size.')
parser.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.') group.add_argument('--pre_layer', type=int, nargs='+', help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.')
parser.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.') group.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.')
group.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.')
# HQQ # HQQ
parser.add_argument('--hqq-backend', type=str, default='PYTORCH_COMPILE', help='Backend for the HQQ loader. Valid options: PYTORCH, PYTORCH_COMPILE, ATEN.') group = parser.add_argument_group('HQQ')
group.add_argument('--hqq-backend', type=str, default='PYTORCH_COMPILE', help='Backend for the HQQ loader. Valid options: PYTORCH, PYTORCH_COMPILE, ATEN.')
# DeepSpeed # DeepSpeed
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.') group = parser.add_argument_group('DeepSpeed')
parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.') group.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.') group.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
group.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
# RWKV # RWKV
parser.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".') group = parser.add_argument_group('RWKV')
parser.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.') group.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
group.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
# RoPE # RoPE
parser.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.') group = parser.add_argument_group('RoPE')
parser.add_argument('--rope_freq_base', type=int, default=0, help='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63).') group.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
parser.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.") group.add_argument('--rope_freq_base', type=int, default=0, help='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63).')
group.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.")
# Gradio # Gradio
parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.') group = parser.add_argument_group('Gradio')
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.') group.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.') group.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.') group.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.') group.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
parser.add_argument('--gradio-auth', type=str, help='Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3".', default=None) group.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
parser.add_argument('--gradio-auth-path', type=str, help='Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above.', default=None) group.add_argument('--gradio-auth', type=str, help='Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3".', default=None)
parser.add_argument('--ssl-keyfile', type=str, help='The path to the SSL certificate key file.', default=None) group.add_argument('--gradio-auth-path', type=str, help='Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above.', default=None)
parser.add_argument('--ssl-certfile', type=str, help='The path to the SSL certificate cert file.', default=None) group.add_argument('--ssl-keyfile', type=str, help='The path to the SSL certificate key file.', default=None)
group.add_argument('--ssl-certfile', type=str, help='The path to the SSL certificate cert file.', default=None)
# API # API
parser.add_argument('--api', action='store_true', help='Enable the API extension.') group = parser.add_argument_group('API')
parser.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.') group.add_argument('--api', action='store_true', help='Enable the API extension.')
parser.add_argument('--public-api-id', type=str, help='Tunnel ID for named Cloudflare Tunnel. Use together with public-api option.', default=None) group.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.')
parser.add_argument('--api-port', type=int, default=5000, help='The listening port for the API.') group.add_argument('--public-api-id', type=str, help='Tunnel ID for named Cloudflare Tunnel. Use together with public-api option.', default=None)
parser.add_argument('--api-key', type=str, default='', help='API authentication key.') group.add_argument('--api-port', type=int, default=5000, help='The listening port for the API.')
parser.add_argument('--admin-key', type=str, default='', help='API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key.') group.add_argument('--api-key', type=str, default='', help='API authentication key.')
parser.add_argument('--nowebui', action='store_true', help='Do not launch the Gradio UI. Useful for launching the API in standalone mode.') group.add_argument('--admin-key', type=str, default='', help='API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key.')
group.add_argument('--nowebui', action='store_true', help='Do not launch the Gradio UI. Useful for launching the API in standalone mode.')
# Multimodal # Multimodal
parser.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.') group = parser.add_argument_group('Multimodal')
group.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.')
# Deprecated parameters # Deprecated parameters
parser.add_argument('--notebook', action='store_true', help='DEPRECATED') group = parser.add_argument_group('Deprecated')
parser.add_argument('--chat', action='store_true', help='DEPRECATED') group.add_argument('--notebook', action='store_true', help='DEPRECATED')
parser.add_argument('--no-stream', action='store_true', help='DEPRECATED') group.add_argument('--chat', action='store_true', help='DEPRECATED')
parser.add_argument('--mul_mat_q', action='store_true', help='DEPRECATED') group.add_argument('--no-stream', action='store_true', help='DEPRECATED')
parser.add_argument('--api-blocking-port', type=int, default=5000, help='DEPRECATED') group.add_argument('--mul_mat_q', action='store_true', help='DEPRECATED')
parser.add_argument('--api-streaming-port', type=int, default=5005, help='DEPRECATED') group.add_argument('--api-blocking-port', type=int, default=5000, help='DEPRECATED')
parser.add_argument('--llama_cpp_seed', type=int, default=0, help='DEPRECATED') group.add_argument('--api-streaming-port', type=int, default=5005, help='DEPRECATED')
parser.add_argument('--use_fast', action='store_true', help='DEPRECATED') group.add_argument('--llama_cpp_seed', type=int, default=0, help='DEPRECATED')
group.add_argument('--use_fast', action='store_true', help='DEPRECATED')
args = parser.parse_args() args = parser.parse_args()
args_defaults = parser.parse_args([]) args_defaults = parser.parse_args([])

View File

@ -1,6 +1,8 @@
import os import os
import warnings import warnings
from modules import shared
import accelerate # This early import makes Intel GPUs happy import accelerate # This early import makes Intel GPUs happy
import modules.one_click_installer_check import modules.one_click_installer_check
@ -36,7 +38,6 @@ import yaml
import modules.extensions as extensions_module import modules.extensions as extensions_module
from modules import ( from modules import (
chat, chat,
shared,
training, training,
ui, ui,
ui_chat, ui_chat,