mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Make paths cross-platform (should work on Windows now)
This commit is contained in:
parent
89fb0a13c5
commit
5345685ead
@ -10,11 +10,10 @@ Output will be written to torch-dumps/name-of-the-model.pt
|
|||||||
from transformers import AutoModelForCausalLM, T5ForConditionalGeneration
|
from transformers import AutoModelForCausalLM, T5ForConditionalGeneration
|
||||||
import torch
|
import torch
|
||||||
from sys import argv
|
from sys import argv
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
path = argv[1]
|
path = Path(argv[1])
|
||||||
if path[-1] != '/':
|
model_name = path.name
|
||||||
path = path+'/'
|
|
||||||
model_name = path.split('/')[-2]
|
|
||||||
|
|
||||||
print(f"Loading {model_name}...")
|
print(f"Loading {model_name}...")
|
||||||
if model_name in ['flan-t5', 't5-large']:
|
if model_name in ['flan-t5', 't5-large']:
|
||||||
@ -24,4 +23,4 @@ else:
|
|||||||
print("Model loaded.")
|
print("Model loaded.")
|
||||||
|
|
||||||
print(f"Saving to torch-dumps/{model_name}.pt")
|
print(f"Saving to torch-dumps/{model_name}.pt")
|
||||||
torch.save(model, f"torch-dumps/{model_name}.pt")
|
torch.save(model, Path(f"torch-dumps/{model_name}.pt"))
|
||||||
|
@ -9,16 +9,16 @@ python download-model.py facebook/opt-1.3b
|
|||||||
import requests
|
import requests
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
import os
|
|
||||||
import tqdm
|
import tqdm
|
||||||
from sys import argv
|
from sys import argv
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
def get_file(args):
|
def get_file(args):
|
||||||
url = args[0]
|
url = args[0]
|
||||||
output_folder = args[1]
|
output_folder = args[1]
|
||||||
|
|
||||||
r = requests.get(url, stream=True)
|
r = requests.get(url, stream=True)
|
||||||
with open(f"{output_folder}/{url.split('/')[-1]}", 'wb') as f:
|
with open(output_folder / Path(url.split('/')[-1]), 'wb') as f:
|
||||||
total_size = int(r.headers.get('content-length', 0))
|
total_size = int(r.headers.get('content-length', 0))
|
||||||
block_size = 1024
|
block_size = 1024
|
||||||
t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True)
|
t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True)
|
||||||
@ -27,13 +27,11 @@ def get_file(args):
|
|||||||
f.write(data)
|
f.write(data)
|
||||||
t.close()
|
t.close()
|
||||||
|
|
||||||
model = argv[1]
|
model = Path(argv[1])
|
||||||
if model.endswith('/'):
|
|
||||||
model = model[:-1]
|
|
||||||
url = f'https://huggingface.co/{model}/tree/main'
|
url = f'https://huggingface.co/{model}/tree/main'
|
||||||
output_folder = f"models/{model.split('/')[-1]}"
|
output_folder = Path("models") / model.name
|
||||||
if not os.path.exists(output_folder):
|
if not output_folder.exists():
|
||||||
os.mkdir(output_folder)
|
output_folder.mkdir()
|
||||||
|
|
||||||
# Finding the relevant files to download
|
# Finding the relevant files to download
|
||||||
page = requests.get(url)
|
page = requests.get(url)
|
||||||
|
36
server.py
36
server.py
@ -1,15 +1,15 @@
|
|||||||
import os
|
|
||||||
import re
|
import re
|
||||||
import time
|
import time
|
||||||
import glob
|
import glob
|
||||||
from sys import exit
|
from sys import exit
|
||||||
import torch
|
import torch
|
||||||
import argparse
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import transformers
|
import transformers
|
||||||
from html_generator import *
|
from html_generator import *
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer, T5Tokenizer
|
||||||
from transformers import GPTJForCausalLM, AutoModelForCausalLM, AutoModelForSeq2SeqLM, OPTForCausalLM, T5Tokenizer, T5ForConditionalGeneration, GPTJModel, AutoModel
|
from transformers import AutoModelForCausalLM, T5ForConditionalGeneration
|
||||||
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
@ -17,37 +17,37 @@ parser.add_argument('--model', type=str, help='Name of the model to load by defa
|
|||||||
parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
|
parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
loaded_preset = None
|
loaded_preset = None
|
||||||
available_models = sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*")+ glob.glob("torch-dumps/*"))))
|
available_models = sorted(set(map(lambda x : str(x.name).replace('.pt', ''), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*')))))
|
||||||
available_models = [item for item in available_models if not item.endswith('.txt')]
|
available_models = [item for item in available_models if not item.endswith('.txt')]
|
||||||
#available_models = sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*[!\.][!t][!x][!t]")+ glob.glob("torch-dumps/*[!\.][!t][!x][!t]"))))
|
available_presets = sorted(set(map(lambda x : str(x.name).split('.')[0], list(Path('presets').glob('*.txt')))))
|
||||||
|
|
||||||
def load_model(model_name):
|
def load_model(model_name):
|
||||||
print(f"Loading {model_name}...")
|
print(f"Loading {model_name}...")
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
|
||||||
# Loading the model
|
# Loading the model
|
||||||
if os.path.exists(f"torch-dumps/{model_name}.pt"):
|
if Path(f"torch-dumps/{model_name}.pt").exists():
|
||||||
print("Loading in .pt format...")
|
print("Loading in .pt format...")
|
||||||
model = torch.load(f"torch-dumps/{model_name}.pt").cuda()
|
model = torch.load(Path(f"torch-dumps/{model_name}.pt")).cuda()
|
||||||
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')):
|
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')):
|
||||||
if any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
if any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
||||||
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True)
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
||||||
elif model_name in ['gpt-j-6B']:
|
elif model_name in ['gpt-j-6B']:
|
||||||
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
||||||
elif model_name in ['flan-t5', 't5-large']:
|
elif model_name in ['flan-t5', 't5-large']:
|
||||||
model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda()
|
model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}")).cuda()
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
||||||
|
|
||||||
# Loading the tokenizer
|
# Loading the tokenizer
|
||||||
if model_name.startswith('gpt4chan'):
|
if model_name.startswith('gpt4chan'):
|
||||||
tokenizer = AutoTokenizer.from_pretrained("models/gpt-j-6B/")
|
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
|
||||||
elif model_name in ['flan-t5']:
|
elif model_name in ['flan-t5']:
|
||||||
tokenizer = T5Tokenizer.from_pretrained(f"models/{model_name}/")
|
tokenizer = T5Tokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
||||||
else:
|
else:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(f"models/{model_name}/")
|
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
||||||
|
|
||||||
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
@ -78,7 +78,7 @@ def generate_reply(question, temperature, max_length, inference_settings, select
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
model, tokenizer = load_model(model_name)
|
model, tokenizer = load_model(model_name)
|
||||||
if inference_settings != loaded_preset:
|
if inference_settings != loaded_preset:
|
||||||
with open(f'presets/{inference_settings}.txt', 'r') as infile:
|
with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
|
||||||
preset = infile.read()
|
preset = infile.read()
|
||||||
loaded_preset = inference_settings
|
loaded_preset = inference_settings
|
||||||
|
|
||||||
@ -143,7 +143,7 @@ if args.notebook:
|
|||||||
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
|
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
|
||||||
length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
|
length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
preset_menu = gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="NovelAI-Sphinx Moth", label='Preset')
|
preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
|
||||||
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
||||||
|
|
||||||
btn.click(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=False)
|
btn.click(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=False)
|
||||||
@ -161,7 +161,7 @@ else:
|
|||||||
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
|
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
|
||||||
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
|
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
|
||||||
length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
|
length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
|
||||||
preset_menu = gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="NovelAI-Sphinx Moth", label='Preset')
|
preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
|
||||||
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
||||||
btn = gr.Button("Generate")
|
btn = gr.Button("Generate")
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
|
Loading…
Reference in New Issue
Block a user