mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-21 23:57:58 +01:00
initial lora training tab
This commit is contained in:
parent
8c8e8b4450
commit
566898a79a
139
modules/training.py
Normal file
139
modules/training.py
Normal file
@ -0,0 +1,139 @@
|
||||
import sys, torch, json
|
||||
from pathlib import Path
|
||||
import gradio as gr
|
||||
from datasets import load_dataset
|
||||
import transformers
|
||||
from modules import ui, shared
|
||||
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict
|
||||
|
||||
def get_json_dataset(path: str):
|
||||
def get_set():
|
||||
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob('*.json'))), key=str.lower)
|
||||
return get_set
|
||||
|
||||
def create_train_interface():
|
||||
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
||||
loraName = gr.Textbox(label="Name", info="The name of your new LoRA file")
|
||||
# TODO: Add explanations of batch sizes and recommendations. Note that batch/microBatch determines gradient accumulation and explain what that means. Note the effects on VRAM usage from changing these values.
|
||||
microBatchSize = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='(TODO)')
|
||||
batchSize = gr.Slider(label='Batch Size', value=128, minimum=1, maximum=1024, step=4, info='(TODO)')
|
||||
epochs = gr.Slider(label='Epochs', value=1, minimum=1, maximum=1000, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
|
||||
learningRate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
|
||||
# TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
|
||||
loraRank = gr.Slider(label='LoRA Rank', value=8, minimum=1, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
|
||||
loraAlpha = gr.Slider(label='LoRA Alpha', value=16, minimum=1, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
|
||||
# TODO: Better explain what this does.
|
||||
loraDropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
|
||||
cutoffLen = gr.Slider(label='Cutoff Length', minimum=1,maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
|
||||
with gr.Row():
|
||||
datasetFunction = get_json_dataset('training/datasets')
|
||||
dataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Dataset')
|
||||
ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
||||
with gr.Row():
|
||||
evalDataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Evaluation Dataset')
|
||||
ui.create_refresh_button(evalDataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
||||
with gr.Row():
|
||||
formatsFunction = get_json_dataset('training/formats')
|
||||
format = gr.Dropdown(choices=formatsFunction(), value='None', label='Data Format')
|
||||
ui.create_refresh_button(format, lambda : None, lambda : {'choices': formatsFunction()}, 'refresh-button')
|
||||
startButton = gr.Button("Start LoRA Training")
|
||||
output = gr.Markdown(value="(...)")
|
||||
startButton.click(do_train, [loraName, microBatchSize, batchSize, epochs, learningRate, loraRank, loraAlpha, loraDropout, cutoffLen, dataset, evalDataset, format], [output])
|
||||
|
||||
def cleanPath(basePath: str, path: str):
|
||||
""""Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
|
||||
# TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path.
|
||||
# Or swap it to a strict whitelist of [a-zA-Z_0-9]
|
||||
path = path.replace('\\', '/').replace('..', '_')
|
||||
if basePath is None:
|
||||
return path
|
||||
return f'{Path(basePath).absolute()}/{path}'
|
||||
|
||||
def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, learningRate: float, loraRank: int, loraAlpha: int, loraDropout: float, cutoffLen: int, dataset: str, evalDataset: str, format: str):
|
||||
# Input validation / processing
|
||||
# TODO: --lora-dir PR once pulled will need to be applied here
|
||||
loraName = f"loras/{cleanPath(None, loraName)}"
|
||||
if dataset is None:
|
||||
return "**Missing dataset choice input, cannot continue.**"
|
||||
if format is None:
|
||||
return "**Missing format choice input, cannot continue.**"
|
||||
gradientAccumulationSteps = batchSize // microBatchSize
|
||||
actualLR = float(learningRate)
|
||||
model = shared.model
|
||||
tokenizer = shared.tokenizer
|
||||
tokenizer.pad_token = 0
|
||||
tokenizer.padding_side = "left"
|
||||
# Prep the dataset, format, etc
|
||||
with open(cleanPath('training/formats', f'{format}.json'), 'r') as formatFile:
|
||||
formatData: dict[str, str] = json.load(formatFile)
|
||||
def tokenize(prompt):
|
||||
result = tokenizer(prompt, truncation=True, max_length=cutoffLen + 1, padding="max_length")
|
||||
return {
|
||||
"input_ids": result["input_ids"][:-1],
|
||||
"attention_mask": result["attention_mask"][:-1],
|
||||
}
|
||||
def generate_prompt(data_point: dict[str, str]):
|
||||
for options, data in formatData.items():
|
||||
if set(options.split(',')) == set(data_point.keys()):
|
||||
for key, val in data_point.items():
|
||||
data = data.replace(f'%{key}%', val)
|
||||
return data
|
||||
raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(formatData.keys())}"')
|
||||
def generate_and_tokenize_prompt(data_point):
|
||||
prompt = generate_prompt(data_point)
|
||||
return tokenize(prompt)
|
||||
data = load_dataset("json", data_files=cleanPath('training/datasets', f'{dataset}.json'))
|
||||
train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
|
||||
if evalDataset == 'None':
|
||||
evalData = None
|
||||
else:
|
||||
evalData = load_dataset("json", data_files=cleanPath('training/datasets', f'{evalDataset}.json'))
|
||||
evalData = evalData['train'].shuffle().map(generate_and_tokenize_prompt)
|
||||
# Start prepping the model itself
|
||||
model = prepare_model_for_int8_training(model)
|
||||
config = LoraConfig(
|
||||
r=loraRank,
|
||||
lora_alpha=loraAlpha,
|
||||
# TODO: Should target_modules be configurable?
|
||||
target_modules=[ "q_proj", "v_proj" ],
|
||||
lora_dropout=loraDropout,
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM"
|
||||
)
|
||||
model = get_peft_model(model, config)
|
||||
trainer = transformers.Trainer(
|
||||
model=model,
|
||||
train_dataset=train_data,
|
||||
eval_dataset=evalData,
|
||||
args=transformers.TrainingArguments(
|
||||
per_device_train_batch_size=microBatchSize,
|
||||
gradient_accumulation_steps=gradientAccumulationSteps,
|
||||
# TODO: Should more of these be configurable? Probably.
|
||||
warmup_steps=100,
|
||||
num_train_epochs=epochs,
|
||||
learning_rate=actualLR,
|
||||
fp16=True,
|
||||
logging_steps=20,
|
||||
evaluation_strategy="steps" if evalData is not None else "no",
|
||||
save_strategy="steps",
|
||||
eval_steps=200 if evalData is not None else None,
|
||||
save_steps=200,
|
||||
output_dir=loraName,
|
||||
save_total_limit=3,
|
||||
load_best_model_at_end=True if evalData is not None else False,
|
||||
# TODO: Enable multi-device support
|
||||
ddp_find_unused_parameters=None,
|
||||
),
|
||||
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
||||
)
|
||||
model.config.use_cache = False
|
||||
old_state_dict = model.state_dict
|
||||
model.state_dict = (
|
||||
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
|
||||
).__get__(model, type(model))
|
||||
if torch.__version__ >= "2" and sys.platform != "win32":
|
||||
model = torch.compile(model)
|
||||
# Actually start and run and save at the end
|
||||
trainer.train()
|
||||
model.save_pretrained(loraName)
|
||||
return "Done!"
|
@ -10,4 +10,6 @@ rwkv==0.7.0
|
||||
safetensors==0.3.0
|
||||
sentencepiece
|
||||
tqdm
|
||||
peft
|
||||
datasets
|
||||
git+https://github.com/huggingface/transformers
|
||||
|
@ -8,10 +8,8 @@ from pathlib import Path
|
||||
|
||||
import gradio as gr
|
||||
|
||||
import modules.chat as chat
|
||||
from modules import chat, shared, ui, training
|
||||
import modules.extensions as extensions_module
|
||||
import modules.shared as shared
|
||||
import modules.ui as ui
|
||||
from modules.html_generator import generate_chat_html
|
||||
from modules.LoRA import add_lora_to_model
|
||||
from modules.models import load_model, load_soft_prompt
|
||||
@ -443,6 +441,9 @@ def create_interface():
|
||||
|
||||
shared.gradio['reset_interface'].click(set_interface_arguments, [shared.gradio[k] for k in ['interface_modes_menu', 'extensions_menu', 'cmd_arguments_menu']], None)
|
||||
shared.gradio['reset_interface'].click(lambda : None, None, None, _js='() => {document.body.innerHTML=\'<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>\'; setTimeout(function(){location.reload()},2500)}')
|
||||
|
||||
with gr.Tab("Training", elem_id="training-tab"):
|
||||
training.create_train_interface()
|
||||
|
||||
if shared.args.extensions is not None:
|
||||
extensions_module.create_extensions_block()
|
||||
|
0
training/datasets/put-trainer-datasets-here.txt
Normal file
0
training/datasets/put-trainer-datasets-here.txt
Normal file
4
training/formats/alpaca-chatbot-format.json
Normal file
4
training/formats/alpaca-chatbot-format.json
Normal file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"instruction,output": "User: %instruction%\nAssistant: %output%",
|
||||
"instruction,input,output": "User: %instruction%: %input%\nAssistant: %output%"
|
||||
}
|
4
training/formats/alpaca-format.json
Normal file
4
training/formats/alpaca-format.json
Normal file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"instruction,output": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n%instruction%\n\n### Response:\n%output%",
|
||||
"instruction,input,output": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n%instruction%\n\n### Input:\n%input%\n\n### Response:\n%output%"
|
||||
}
|
0
training/formats/put-trainer-formats-here.txt
Normal file
0
training/formats/put-trainer-formats-here.txt
Normal file
Loading…
Reference in New Issue
Block a user