Implement a demo HF wrapper for exllama to utilize existing HF transformers decoding. (#2777)

This commit is contained in:
LarryVRH 2023-06-22 02:31:42 +08:00 committed by GitHub
parent a06acd6d09
commit 580c1ee748
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 101 additions and 6 deletions

View File

@ -212,7 +212,7 @@ Optionally, you can use the following command-line flags:
| Flag | Description | | Flag | Description |
|--------------------------------------------|-------------| |--------------------------------------------|-------------|
| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, llamacpp, rwkv, flexgen | | `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, flexgen |
#### Accelerate/transformers #### Accelerate/transformers

82
modules/exllama_hf.py Normal file
View File

@ -0,0 +1,82 @@
import os
import sys
from pathlib import Path
from typing import *
import torch
from transformers import (
GenerationConfig,
LlamaTokenizer,
PretrainedConfig,
PreTrainedModel
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from modules import shared
from modules.logging_colors import logger
from modules.relative_imports import RelativeImport
with RelativeImport("repositories/exllama"):
from model import ExLlama, ExLlamaCache, ExLlamaConfig
class ExllamaHF(PreTrainedModel):
def __init__(self, config: ExLlamaConfig):
super().__init__(PretrainedConfig())
self.ex_config = config
self.ex_model = ExLlama(self.ex_config)
self.generation_config = GenerationConfig()
def _validate_model_class(self):
pass
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
pass
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, **kwargs}
@property
def device(self) -> torch.device:
# TODO: May cause problem on multi-gpu inference?
return torch.device(0)
def __call__(self, *args, **kwargs):
# TODO: Some decoding methods (such as Contrastive Search) may not work at this time
assert len(args) == 0, 'no *args should be passed to forward'
use_cache = kwargs['use_cache']
seq = kwargs['input_ids'][0].tolist()
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None
if cache is None:
cache = ExLlamaCache(self.ex_model)
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True)
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache).to(self.device)
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
if isinstance(pretrained_model_name_or_path, str):
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
config = ExLlamaConfig(pretrained_model_name_or_path / 'config.json')
# from 'oobabooga/text-generation-webui/modules/exllama.py'
weight_path = None
for ext in ['.safetensors', '.pt', '.bin']:
found = list(pretrained_model_name_or_path.glob(f"*{ext}"))
if len(found) > 0:
weight_path = found[-1]
break
assert weight_path is not None, f'could not find weight in "{pretrained_model_name_or_path}"'
config.model_path = str(weight_path)
# This slowes down a bit but align better with autogptq generation.
# TODO: Should give user choice to tune the exllama config
config.act_order = True
config.fused_attn = False
config.fused_mlp_thd = 0
return ExllamaHF(config)

View File

@ -55,6 +55,10 @@ loaders_and_params = {
'ExLlama' : [ 'ExLlama' : [
'gpu_split', 'gpu_split',
'exllama_info', 'exllama_info',
],
'ExLlama_HF' : [
'gpu_split',
'exllama_HF_info',
] ]
} }

View File

@ -49,7 +49,8 @@ def load_model(model_name, loader=None):
'llama.cpp': llamacpp_loader, 'llama.cpp': llamacpp_loader,
'FlexGen': flexgen_loader, 'FlexGen': flexgen_loader,
'RWKV': RWKV_loader, 'RWKV': RWKV_loader,
'ExLlama': ExLlama_loader 'ExLlama': ExLlama_loader,
'ExLlama_HF': ExLlama_HF_loader
} }
if loader is None: if loader is None:
@ -278,6 +279,12 @@ def ExLlama_loader(model_name):
return model, tokenizer return model, tokenizer
def ExLlama_HF_loader(model_name):
from modules.exllama_hf import ExllamaHF
return ExllamaHF.from_pretrained(model_name)
def get_max_memory_dict(): def get_max_memory_dict():
max_memory = {} max_memory = {}
if shared.args.gpu_memory: if shared.args.gpu_memory:

View File

@ -98,7 +98,7 @@ parser.add_argument('--extensions', type=str, nargs="+", help='The list of exten
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.') parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
# Model loader # Model loader
parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, llamacpp, rwkv, flexgen') parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, flexgen')
# Accelerate/transformers # Accelerate/transformers
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.') parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
@ -218,6 +218,8 @@ def fix_loader_name(name):
return 'GPTQ-for-LLaMa' return 'GPTQ-for-LLaMa'
elif name in ['exllama', 'ex-llama', 'ex_llama', 'exlama']: elif name in ['exllama', 'ex-llama', 'ex_llama', 'exlama']:
return 'ExLlama' return 'ExLlama'
elif name in ['exllama-hf', 'exllama_hf', 'exllama hf', 'ex-llama-hf', 'ex_llama_hf']:
return 'ExLlama_HF'
if args.loader is not None: if args.loader is not None:

View File

@ -104,9 +104,8 @@ def get_reply_from_output_ids(output_ids, input_ids, original_question, state, i
else: else:
new_tokens = len(output_ids) - len(input_ids[0]) new_tokens = len(output_ids) - len(input_ids[0])
reply = decode(output_ids[-new_tokens:], state['skip_special_tokens']) reply = decode(output_ids[-new_tokens:], state['skip_special_tokens'])
# Prevent LlamaTokenizer from skipping a space # Prevent LlamaTokenizer from skipping a space
if type(shared.tokenizer) is transformers.LlamaTokenizer and len(output_ids) > 0: if type(shared.tokenizer) in [transformers.LlamaTokenizer, transformers.LlamaTokenizerFast] and len(output_ids) > 0:
if shared.tokenizer.convert_ids_to_tokens(int(output_ids[-new_tokens])).startswith(''): if shared.tokenizer.convert_ids_to_tokens(int(output_ids[-new_tokens])).startswith(''):
reply = ' ' + reply reply = ' ' + reply

View File

@ -197,7 +197,7 @@ def create_model_menus():
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "AutoGPTQ", "GPTQ-for-LLaMa", "ExLlama", "llama.cpp"], value=None) shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "AutoGPTQ", "GPTQ-for-LLaMa", "ExLlama", "ExLlama_HF", "llama.cpp"], value=None)
with gr.Box(): with gr.Box():
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
@ -237,6 +237,7 @@ def create_model_menus():
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.') shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).') shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
shared.gradio['exllama_info'] = gr.Markdown('ExLlama has to be installed manually. See the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).') shared.gradio['exllama_info'] = gr.Markdown('ExLlama has to be installed manually. See the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s still a bit buggy, so feel free to help out by fixing issues.\n\nCheck out PR [#2777](https://github.com/oobabooga/text-generation-webui/pull/2777) for more details.')
with gr.Column(): with gr.Column():
with gr.Row(): with gr.Row():