mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-12-23 21:18:00 +01:00
Improve usage of stopping_criteria
This commit is contained in:
parent
add9330e5e
commit
59b5f7a4b7
@ -119,18 +119,11 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
output = input_ids[0]
|
||||
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
|
||||
n = shared.tokenizer.eos_token_id if eos_token is None else int(encode(eos_token)[0][-1])
|
||||
stopping_criteria_list = transformers.StoppingCriteriaList()
|
||||
if stopping_string is not None:
|
||||
# The stopping_criteria code below was copied from
|
||||
# https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
|
||||
# Copied from https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
|
||||
t = encode(stopping_string, 0, add_special_tokens=False)
|
||||
stopping_criteria_list = transformers.StoppingCriteriaList([
|
||||
_SentinelTokenStoppingCriteria(
|
||||
sentinel_token_ids=t,
|
||||
starting_idx=len(input_ids[0])
|
||||
)
|
||||
])
|
||||
else:
|
||||
stopping_criteria_list = []
|
||||
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
|
||||
|
||||
if not shared.args.flexgen:
|
||||
generate_params = [
|
||||
@ -184,17 +177,17 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
elif not shared.args.flexgen:
|
||||
|
||||
def generate_with_callback(callback=None, **kwargs):
|
||||
if 'stopping_criteria' not in kwargs:
|
||||
kwargs['stopping_criteria'] = []
|
||||
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
|
||||
clear_torch_cache()
|
||||
shared.model.generate(**kwargs)
|
||||
with torch.no_grad():
|
||||
shared.model.generate(**kwargs)
|
||||
|
||||
def generate_with_streaming(**kwargs):
|
||||
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
||||
|
||||
yield formatted_outputs(original_question, shared.model_name)
|
||||
for output in eval(f"generate_with_streaming({', '.join(generate_params)})"):
|
||||
print(print('Used vram in gib:', torch.cuda.memory_allocated() / 1024**3))
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
reply = decode(output)
|
||||
|
Loading…
Reference in New Issue
Block a user