mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-12-01 11:54:04 +01:00
Merge pull request #295 from Zerogoki00/opt4-bit
Add support for quantized OPT models
This commit is contained in:
commit
5c0522307f
@ -140,8 +140,9 @@ Optionally, you can use the following command-line flags:
|
|||||||
| `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. |
|
| `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. |
|
||||||
| `--cpu` | Use the CPU to generate text.|
|
| `--cpu` | Use the CPU to generate text.|
|
||||||
| `--load-in-8bit` | Load the model with 8-bit precision.|
|
| `--load-in-8bit` | Load the model with 8-bit precision.|
|
||||||
| `--load-in-4bit` | Load the model with 4-bit precision. Currently only works with LLaMA.|
|
| `--load-in-4bit` | DEPRECATED: use `--gptq-bits 4` instead. |
|
||||||
| `--gptq-bits GPTQ_BITS` | Load a pre-quantized model with specified precision. 2, 3, 4 and 8 (bit) are supported. Currently only works with LLaMA. |
|
| `--gptq-bits GPTQ_BITS` | Load a pre-quantized model with specified precision. 2, 3, 4 and 8 (bit) are supported. Currently only works with LLaMA and OPT. |
|
||||||
|
| `--gptq-model-type MODEL_TYPE` | Model type of pre-quantized model. Currently only LLaMa and OPT are supported. |
|
||||||
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
|
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
|
||||||
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.|
|
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.|
|
||||||
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
|
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
|
||||||
|
@ -7,28 +7,40 @@ import torch
|
|||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
|
|
||||||
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
|
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
|
||||||
from llama import load_quant
|
import llama
|
||||||
|
import opt
|
||||||
|
|
||||||
|
|
||||||
# 4-bit LLaMA
|
def load_quantized(model_name):
|
||||||
def load_quantized_LLaMA(model_name):
|
if not shared.args.gptq_model_type:
|
||||||
if shared.args.load_in_4bit:
|
# Try to determine model type from model name
|
||||||
bits = 4
|
model_type = model_name.split('-')[0].lower()
|
||||||
|
if model_type not in ('llama', 'opt'):
|
||||||
|
print("Can't determine model type from model name. Please specify it manually using --gptq-model-type "
|
||||||
|
"argument")
|
||||||
|
exit()
|
||||||
else:
|
else:
|
||||||
bits = shared.args.gptq_bits
|
model_type = shared.args.gptq_model_type.lower()
|
||||||
|
|
||||||
|
if model_type == 'llama':
|
||||||
|
load_quant = llama.load_quant
|
||||||
|
elif model_type == 'opt':
|
||||||
|
load_quant = opt.load_quant
|
||||||
|
else:
|
||||||
|
print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported")
|
||||||
|
exit()
|
||||||
|
|
||||||
path_to_model = Path(f'models/{model_name}')
|
path_to_model = Path(f'models/{model_name}')
|
||||||
pt_model = ''
|
|
||||||
if path_to_model.name.lower().startswith('llama-7b'):
|
if path_to_model.name.lower().startswith('llama-7b'):
|
||||||
pt_model = f'llama-7b-{bits}bit.pt'
|
pt_model = f'llama-7b-{shared.args.gptq_bits}bit.pt'
|
||||||
elif path_to_model.name.lower().startswith('llama-13b'):
|
elif path_to_model.name.lower().startswith('llama-13b'):
|
||||||
pt_model = f'llama-13b-{bits}bit.pt'
|
pt_model = f'llama-13b-{shared.args.gptq_bits}bit.pt'
|
||||||
elif path_to_model.name.lower().startswith('llama-30b'):
|
elif path_to_model.name.lower().startswith('llama-30b'):
|
||||||
pt_model = f'llama-30b-{bits}bit.pt'
|
pt_model = f'llama-30b-{shared.args.gptq_bits}bit.pt'
|
||||||
elif path_to_model.name.lower().startswith('llama-65b'):
|
elif path_to_model.name.lower().startswith('llama-65b'):
|
||||||
pt_model = f'llama-65b-{bits}bit.pt'
|
pt_model = f'llama-65b-{shared.args.gptq_bits}bit.pt'
|
||||||
else:
|
else:
|
||||||
pt_model = f'{model_name}-{bits}bit.pt'
|
pt_model = f'{model_name}-{shared.args.gptq_bits}bit.pt'
|
||||||
|
|
||||||
# Try to find the .pt both in models/ and in the subfolder
|
# Try to find the .pt both in models/ and in the subfolder
|
||||||
pt_path = None
|
pt_path = None
|
||||||
@ -40,7 +52,7 @@ def load_quantized_LLaMA(model_name):
|
|||||||
print(f"Could not find {pt_model}, exiting...")
|
print(f"Could not find {pt_model}, exiting...")
|
||||||
exit()
|
exit()
|
||||||
|
|
||||||
model = load_quant(str(path_to_model), str(pt_path), bits)
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.gptq_bits)
|
||||||
|
|
||||||
# Multiple GPUs or GPU+CPU
|
# Multiple GPUs or GPU+CPU
|
||||||
if shared.args.gpu_memory:
|
if shared.args.gpu_memory:
|
@ -1,6 +1,5 @@
|
|||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import sys
|
|
||||||
import time
|
import time
|
||||||
import zipfile
|
import zipfile
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -35,6 +34,7 @@ if shared.args.deepspeed:
|
|||||||
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
|
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
|
||||||
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
||||||
|
|
||||||
|
|
||||||
def load_model(model_name):
|
def load_model(model_name):
|
||||||
print(f"Loading {model_name}...")
|
print(f"Loading {model_name}...")
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
@ -42,7 +42,7 @@ def load_model(model_name):
|
|||||||
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
||||||
|
|
||||||
# Default settings
|
# Default settings
|
||||||
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.gptq_bits > 0, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
|
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
|
||||||
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
||||||
else:
|
else:
|
||||||
@ -87,11 +87,11 @@ def load_model(model_name):
|
|||||||
|
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
# 4-bit LLaMA
|
# Quantized model
|
||||||
elif shared.args.gptq_bits > 0 or shared.args.load_in_4bit:
|
elif shared.args.gptq_bits > 0:
|
||||||
from modules.quantized_LLaMA import load_quantized_LLaMA
|
from modules.GPTQ_loader import load_quantized
|
||||||
|
|
||||||
model = load_quantized_LLaMA(model_name)
|
model = load_quantized(model_name)
|
||||||
|
|
||||||
# Custom
|
# Custom
|
||||||
else:
|
else:
|
||||||
|
@ -69,8 +69,9 @@ parser.add_argument('--chat', action='store_true', help='Launch the web UI in ch
|
|||||||
parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
|
parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
|
||||||
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
|
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
|
||||||
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
|
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
|
||||||
parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision. Currently only works with LLaMA.')
|
parser.add_argument('--load-in-4bit', action='store_true', help='DEPRECATED: use --gptq-bits 4 instead.')
|
||||||
parser.add_argument('--gptq-bits', type=int, default=0, help='Load a pre-quantized model with specified precision. 2, 3, 4 and 8bit are supported. Currently only works with LLaMA.')
|
parser.add_argument('--gptq-bits', type=int, default=0, help='Load a pre-quantized model with specified precision. 2, 3, 4 and 8bit are supported. Currently only works with LLaMA and OPT.')
|
||||||
|
parser.add_argument('--gptq-model-type', type=str, help='Model type of pre-quantized model. Currently only LLaMa and OPT are supported.')
|
||||||
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
||||||
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
||||||
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
||||||
@ -95,3 +96,8 @@ parser.add_argument('--share', action='store_true', help='Create a public URL. T
|
|||||||
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
|
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
|
||||||
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Provisional, this will be deleted later
|
||||||
|
if args.load_in_4bit:
|
||||||
|
print("Warning: --load-in-4bit is deprecated and will be removed. Use --gptq-bits 4 instead.\n")
|
||||||
|
args.gptq_bits = 4
|
||||||
|
Loading…
Reference in New Issue
Block a user