Create llamacpp_HF loader (#3062)

This commit is contained in:
oobabooga 2023-07-16 02:21:13 -03:00 committed by GitHub
parent 7c4d4fc7d3
commit 5e3f7e00a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 143 additions and 1 deletions

106
modules/llamacpp_hf.py Normal file
View File

@ -0,0 +1,106 @@
import os
from pathlib import Path
from typing import Any, Dict, Optional, Union
import llama_cpp
import numpy as np
import torch
from llama_cpp import Llama
from torch.nn import CrossEntropyLoss
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from modules import shared
from modules.llamacpp_model import LlamaCppModel
from modules.logging_colors import logger
class LlamacppHF(PreTrainedModel):
def __init__(self, model):
super().__init__(PretrainedConfig())
self.model = model
self.generation_config = GenerationConfig()
self.cache = None
def _validate_model_class(self):
pass
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
pass
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, **kwargs}
@property
def device(self) -> torch.device:
return torch.device(0)
def __call__(self, *args, **kwargs):
# TODO: Some decoding methods (such as Contrastive Search) may not work at this time
assert len(args) == 0, 'no *args should be passed to forward'
use_cache = kwargs.get('use_cache', True)
labels = kwargs.get('labels', None)
seq = kwargs['input_ids'][0].tolist()
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None
# Make the forward call
seq_tensor = torch.tensor(seq)
self.cache = seq_tensor
if labels is None:
if self.cache is None or not torch.equal(self.cache, seq_tensor[:-1]):
self.model.reset()
self.model.eval(seq)
else:
self.model.eval([seq[-1]])
logits = torch.tensor(self.model.eval_logits)[-1].view(1, 1, -1).to(kwargs['input_ids'].device)
else:
self.model.reset()
self.model.eval(seq)
logits = torch.tensor(self.model.eval_logits)
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(kwargs['input_ids'].device)
# Based on transformers/models/llama/modeling_llama.py
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, logits.shape[-1])
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
if isinstance(pretrained_model_name_or_path, str):
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
if path.is_file():
model_file = path
else:
model_file = list(path.glob('*ggml*.bin'))[0]
logger.info(f"llama.cpp weights detected: {model_file}\n")
params = {
'model_path': str(model_file),
'n_ctx': shared.args.n_ctx,
'seed': int(shared.args.llama_cpp_seed),
'n_threads': shared.args.threads or None,
'n_batch': shared.args.n_batch,
'use_mmap': not shared.args.no_mmap,
'use_mlock': shared.args.mlock,
'low_vram': shared.args.low_vram,
'n_gpu_layers': shared.args.n_gpu_layers,
'logits_all': True,
}
model = Llama(**params)
return LlamacppHF(model)

View File

@ -38,6 +38,17 @@ loaders_and_params = {
'mlock', 'mlock',
'llama_cpp_seed', 'llama_cpp_seed',
], ],
'llamacpp_HF': [
'n_ctx',
'n_gpu_layers',
'n_batch',
'threads',
'no_mmap',
'low_vram',
'mlock',
'llama_cpp_seed',
'llamacpp_HF_info',
],
'Transformers': [ 'Transformers': [
'cpu_memory', 'cpu_memory',
'gpu_memory', 'gpu_memory',

View File

@ -55,6 +55,7 @@ def load_model(model_name, loader=None):
'AutoGPTQ': AutoGPTQ_loader, 'AutoGPTQ': AutoGPTQ_loader,
'GPTQ-for-LLaMa': GPTQ_loader, 'GPTQ-for-LLaMa': GPTQ_loader,
'llama.cpp': llamacpp_loader, 'llama.cpp': llamacpp_loader,
'llamacpp_HF': llamacpp_HF_loader,
'FlexGen': flexgen_loader, 'FlexGen': flexgen_loader,
'RWKV': RWKV_loader, 'RWKV': RWKV_loader,
'ExLlama': ExLlama_loader, 'ExLlama': ExLlama_loader,
@ -268,6 +269,27 @@ def llamacpp_loader(model_name):
return model, tokenizer return model, tokenizer
def llamacpp_HF_loader(model_name):
from modules.llamacpp_hf import LlamacppHF
for fname in ["oobabooga_llama-tokenizer", "llama-tokenizer"]:
path = Path(f'{shared.args.model_dir}/{fname}')
if path.exists():
break
else:
logger.error("Could not load the model because a tokenizer in transformers format was not found. Please download oobabooga/llama-tokenizer.")
return None, None
tokenizer = AutoTokenizer.from_pretrained(
path,
trust_remote_code=shared.args.trust_remote_code,
use_fast=False
)
model = LlamacppHF.from_pretrained(model_name)
return model, tokenizer
def GPTQ_loader(model_name): def GPTQ_loader(model_name):
# Monkey patch # Monkey patch

View File

@ -214,6 +214,8 @@ def fix_loader_name(name):
name = name.lower() name = name.lower()
if name in ['llamacpp', 'llama.cpp', 'llama-cpp', 'llama cpp']: if name in ['llamacpp', 'llama.cpp', 'llama-cpp', 'llama cpp']:
return 'llama.cpp' return 'llama.cpp'
if name in ['llamacpp_hf', 'llama.cpp_hf', 'llama-cpp-hf', 'llamacpp-hf', 'llama.cpp-hf']:
return 'llamacpp_HF'
elif name in ['transformers', 'huggingface', 'hf', 'hugging_face', 'hugging face']: elif name in ['transformers', 'huggingface', 'hf', 'hugging_face', 'hugging face']:
return 'Transformers' return 'Transformers'
elif name in ['autogptq', 'auto-gptq', 'auto_gptq', 'auto gptq']: elif name in ['autogptq', 'auto-gptq', 'auto_gptq', 'auto gptq']:

View File

@ -204,7 +204,7 @@ def create_model_menus():
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "ExLlama_HF", "AutoGPTQ", "llama.cpp", "ExLlama", "GPTQ-for-LLaMa"], value=None) shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "ExLlama_HF", "AutoGPTQ", "llama.cpp", "ExLlama", "llama.cpp_HF", "GPTQ-for-LLaMa"], value=None)
with gr.Box(): with gr.Box():
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
@ -250,6 +250,7 @@ def create_model_menus():
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).') shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
shared.gradio['exllama_info'] = gr.Markdown('For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).') shared.gradio['exllama_info'] = gr.Markdown('For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.') shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.')
shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF is a wrapper that lets you use llama.cpp like a Transformers model, which means it can use the Transformers samplers. It works, but it\'s experimental and slow. Contributions are welcome.\n\nTo use it, make sure to first download oobabooga/llama-tokenizer under "Download custom model or LoRA".')
with gr.Column(): with gr.Column():
with gr.Row(): with gr.Row():