mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-26 01:30:20 +01:00
Create llamacpp_HF loader (#3062)
This commit is contained in:
parent
7c4d4fc7d3
commit
5e3f7e00a9
106
modules/llamacpp_hf.py
Normal file
106
modules/llamacpp_hf.py
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional, Union
|
||||||
|
|
||||||
|
import llama_cpp
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from llama_cpp import Llama
|
||||||
|
from torch.nn import CrossEntropyLoss
|
||||||
|
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel
|
||||||
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||||
|
|
||||||
|
from modules import shared
|
||||||
|
from modules.llamacpp_model import LlamaCppModel
|
||||||
|
from modules.logging_colors import logger
|
||||||
|
|
||||||
|
|
||||||
|
class LlamacppHF(PreTrainedModel):
|
||||||
|
def __init__(self, model):
|
||||||
|
super().__init__(PretrainedConfig())
|
||||||
|
self.model = model
|
||||||
|
self.generation_config = GenerationConfig()
|
||||||
|
self.cache = None
|
||||||
|
|
||||||
|
def _validate_model_class(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
||||||
|
return {'input_ids': input_ids, **kwargs}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self) -> torch.device:
|
||||||
|
return torch.device(0)
|
||||||
|
|
||||||
|
def __call__(self, *args, **kwargs):
|
||||||
|
# TODO: Some decoding methods (such as Contrastive Search) may not work at this time
|
||||||
|
assert len(args) == 0, 'no *args should be passed to forward'
|
||||||
|
use_cache = kwargs.get('use_cache', True)
|
||||||
|
labels = kwargs.get('labels', None)
|
||||||
|
seq = kwargs['input_ids'][0].tolist()
|
||||||
|
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None
|
||||||
|
|
||||||
|
# Make the forward call
|
||||||
|
seq_tensor = torch.tensor(seq)
|
||||||
|
self.cache = seq_tensor
|
||||||
|
if labels is None:
|
||||||
|
if self.cache is None or not torch.equal(self.cache, seq_tensor[:-1]):
|
||||||
|
self.model.reset()
|
||||||
|
self.model.eval(seq)
|
||||||
|
else:
|
||||||
|
self.model.eval([seq[-1]])
|
||||||
|
|
||||||
|
logits = torch.tensor(self.model.eval_logits)[-1].view(1, 1, -1).to(kwargs['input_ids'].device)
|
||||||
|
else:
|
||||||
|
self.model.reset()
|
||||||
|
self.model.eval(seq)
|
||||||
|
logits = torch.tensor(self.model.eval_logits)
|
||||||
|
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(kwargs['input_ids'].device)
|
||||||
|
|
||||||
|
# Based on transformers/models/llama/modeling_llama.py
|
||||||
|
loss = None
|
||||||
|
if labels is not None:
|
||||||
|
# Shift so that tokens < n predict n
|
||||||
|
shift_logits = logits[..., :-1, :].contiguous()
|
||||||
|
shift_labels = labels[..., 1:].contiguous()
|
||||||
|
# Flatten the tokens
|
||||||
|
loss_fct = CrossEntropyLoss()
|
||||||
|
shift_logits = shift_logits.view(-1, logits.shape[-1])
|
||||||
|
shift_labels = shift_labels.view(-1)
|
||||||
|
# Enable model parallelism
|
||||||
|
shift_labels = shift_labels.to(shift_logits.device)
|
||||||
|
loss = loss_fct(shift_logits, shift_labels)
|
||||||
|
|
||||||
|
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
||||||
|
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
|
||||||
|
if isinstance(pretrained_model_name_or_path, str):
|
||||||
|
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
|
||||||
|
|
||||||
|
path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
|
||||||
|
if path.is_file():
|
||||||
|
model_file = path
|
||||||
|
else:
|
||||||
|
model_file = list(path.glob('*ggml*.bin'))[0]
|
||||||
|
|
||||||
|
logger.info(f"llama.cpp weights detected: {model_file}\n")
|
||||||
|
params = {
|
||||||
|
'model_path': str(model_file),
|
||||||
|
'n_ctx': shared.args.n_ctx,
|
||||||
|
'seed': int(shared.args.llama_cpp_seed),
|
||||||
|
'n_threads': shared.args.threads or None,
|
||||||
|
'n_batch': shared.args.n_batch,
|
||||||
|
'use_mmap': not shared.args.no_mmap,
|
||||||
|
'use_mlock': shared.args.mlock,
|
||||||
|
'low_vram': shared.args.low_vram,
|
||||||
|
'n_gpu_layers': shared.args.n_gpu_layers,
|
||||||
|
'logits_all': True,
|
||||||
|
}
|
||||||
|
|
||||||
|
model = Llama(**params)
|
||||||
|
return LlamacppHF(model)
|
@ -38,6 +38,17 @@ loaders_and_params = {
|
|||||||
'mlock',
|
'mlock',
|
||||||
'llama_cpp_seed',
|
'llama_cpp_seed',
|
||||||
],
|
],
|
||||||
|
'llamacpp_HF': [
|
||||||
|
'n_ctx',
|
||||||
|
'n_gpu_layers',
|
||||||
|
'n_batch',
|
||||||
|
'threads',
|
||||||
|
'no_mmap',
|
||||||
|
'low_vram',
|
||||||
|
'mlock',
|
||||||
|
'llama_cpp_seed',
|
||||||
|
'llamacpp_HF_info',
|
||||||
|
],
|
||||||
'Transformers': [
|
'Transformers': [
|
||||||
'cpu_memory',
|
'cpu_memory',
|
||||||
'gpu_memory',
|
'gpu_memory',
|
||||||
|
@ -55,6 +55,7 @@ def load_model(model_name, loader=None):
|
|||||||
'AutoGPTQ': AutoGPTQ_loader,
|
'AutoGPTQ': AutoGPTQ_loader,
|
||||||
'GPTQ-for-LLaMa': GPTQ_loader,
|
'GPTQ-for-LLaMa': GPTQ_loader,
|
||||||
'llama.cpp': llamacpp_loader,
|
'llama.cpp': llamacpp_loader,
|
||||||
|
'llamacpp_HF': llamacpp_HF_loader,
|
||||||
'FlexGen': flexgen_loader,
|
'FlexGen': flexgen_loader,
|
||||||
'RWKV': RWKV_loader,
|
'RWKV': RWKV_loader,
|
||||||
'ExLlama': ExLlama_loader,
|
'ExLlama': ExLlama_loader,
|
||||||
@ -268,6 +269,27 @@ def llamacpp_loader(model_name):
|
|||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
def llamacpp_HF_loader(model_name):
|
||||||
|
from modules.llamacpp_hf import LlamacppHF
|
||||||
|
|
||||||
|
for fname in ["oobabooga_llama-tokenizer", "llama-tokenizer"]:
|
||||||
|
path = Path(f'{shared.args.model_dir}/{fname}')
|
||||||
|
if path.exists():
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
logger.error("Could not load the model because a tokenizer in transformers format was not found. Please download oobabooga/llama-tokenizer.")
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
path,
|
||||||
|
trust_remote_code=shared.args.trust_remote_code,
|
||||||
|
use_fast=False
|
||||||
|
)
|
||||||
|
|
||||||
|
model = LlamacppHF.from_pretrained(model_name)
|
||||||
|
return model, tokenizer
|
||||||
|
|
||||||
|
|
||||||
def GPTQ_loader(model_name):
|
def GPTQ_loader(model_name):
|
||||||
|
|
||||||
# Monkey patch
|
# Monkey patch
|
||||||
|
@ -214,6 +214,8 @@ def fix_loader_name(name):
|
|||||||
name = name.lower()
|
name = name.lower()
|
||||||
if name in ['llamacpp', 'llama.cpp', 'llama-cpp', 'llama cpp']:
|
if name in ['llamacpp', 'llama.cpp', 'llama-cpp', 'llama cpp']:
|
||||||
return 'llama.cpp'
|
return 'llama.cpp'
|
||||||
|
if name in ['llamacpp_hf', 'llama.cpp_hf', 'llama-cpp-hf', 'llamacpp-hf', 'llama.cpp-hf']:
|
||||||
|
return 'llamacpp_HF'
|
||||||
elif name in ['transformers', 'huggingface', 'hf', 'hugging_face', 'hugging face']:
|
elif name in ['transformers', 'huggingface', 'hf', 'hugging_face', 'hugging face']:
|
||||||
return 'Transformers'
|
return 'Transformers'
|
||||||
elif name in ['autogptq', 'auto-gptq', 'auto_gptq', 'auto gptq']:
|
elif name in ['autogptq', 'auto-gptq', 'auto_gptq', 'auto gptq']:
|
||||||
|
@ -204,7 +204,7 @@ def create_model_menus():
|
|||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "ExLlama_HF", "AutoGPTQ", "llama.cpp", "ExLlama", "GPTQ-for-LLaMa"], value=None)
|
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "ExLlama_HF", "AutoGPTQ", "llama.cpp", "ExLlama", "llama.cpp_HF", "GPTQ-for-LLaMa"], value=None)
|
||||||
with gr.Box():
|
with gr.Box():
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
@ -250,6 +250,7 @@ def create_model_menus():
|
|||||||
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
|
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
|
||||||
shared.gradio['exllama_info'] = gr.Markdown('For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
|
shared.gradio['exllama_info'] = gr.Markdown('For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
|
||||||
shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.')
|
shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.')
|
||||||
|
shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF is a wrapper that lets you use llama.cpp like a Transformers model, which means it can use the Transformers samplers. It works, but it\'s experimental and slow. Contributions are welcome.\n\nTo use it, make sure to first download oobabooga/llama-tokenizer under "Download custom model or LoRA".')
|
||||||
|
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
|
Loading…
Reference in New Issue
Block a user