mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Add "seed" menu in the Parameters tab
This commit is contained in:
parent
45b7e53565
commit
61346b88ea
@ -34,6 +34,7 @@ async def run(context):
|
|||||||
'penalty_alpha': 0,
|
'penalty_alpha': 0,
|
||||||
'length_penalty': 1,
|
'length_penalty': 1,
|
||||||
'early_stopping': False,
|
'early_stopping': False,
|
||||||
|
'seed': -1,
|
||||||
}
|
}
|
||||||
session = random_hash()
|
session = random_hash()
|
||||||
|
|
||||||
@ -44,14 +45,14 @@ async def run(context):
|
|||||||
case "send_hash":
|
case "send_hash":
|
||||||
await websocket.send(json.dumps({
|
await websocket.send(json.dumps({
|
||||||
"session_hash": session,
|
"session_hash": session,
|
||||||
"fn_index": 9
|
"fn_index": 12
|
||||||
}))
|
}))
|
||||||
case "estimation":
|
case "estimation":
|
||||||
pass
|
pass
|
||||||
case "send_data":
|
case "send_data":
|
||||||
await websocket.send(json.dumps({
|
await websocket.send(json.dumps({
|
||||||
"session_hash": session,
|
"session_hash": session,
|
||||||
"fn_index": 9,
|
"fn_index": 12,
|
||||||
"data": [
|
"data": [
|
||||||
context,
|
context,
|
||||||
params['max_new_tokens'],
|
params['max_new_tokens'],
|
||||||
@ -68,6 +69,7 @@ async def run(context):
|
|||||||
params['penalty_alpha'],
|
params['penalty_alpha'],
|
||||||
params['length_penalty'],
|
params['length_penalty'],
|
||||||
params['early_stopping'],
|
params['early_stopping'],
|
||||||
|
params['seed'],
|
||||||
]
|
]
|
||||||
}))
|
}))
|
||||||
case "process_starts":
|
case "process_starts":
|
||||||
|
@ -32,6 +32,7 @@ params = {
|
|||||||
'penalty_alpha': 0,
|
'penalty_alpha': 0,
|
||||||
'length_penalty': 1,
|
'length_penalty': 1,
|
||||||
'early_stopping': False,
|
'early_stopping': False,
|
||||||
|
'seed': -1,
|
||||||
}
|
}
|
||||||
|
|
||||||
# Input prompt
|
# Input prompt
|
||||||
@ -54,6 +55,7 @@ response = requests.post(f"http://{server}:7860/run/textgen", json={
|
|||||||
params['penalty_alpha'],
|
params['penalty_alpha'],
|
||||||
params['length_penalty'],
|
params['length_penalty'],
|
||||||
params['early_stopping'],
|
params['early_stopping'],
|
||||||
|
params['seed'],
|
||||||
]
|
]
|
||||||
}).json()
|
}).json()
|
||||||
|
|
||||||
|
@ -56,6 +56,7 @@ class Handler(BaseHTTPRequestHandler):
|
|||||||
penalty_alpha=0,
|
penalty_alpha=0,
|
||||||
length_penalty=1,
|
length_penalty=1,
|
||||||
early_stopping=False,
|
early_stopping=False,
|
||||||
|
seed=-1,
|
||||||
)
|
)
|
||||||
|
|
||||||
answer = ''
|
answer = ''
|
||||||
|
@ -91,7 +91,7 @@ def extract_message_from_reply(question, reply, name1, name2, check, impersonate
|
|||||||
def stop_everything_event():
|
def stop_everything_event():
|
||||||
shared.stop_everything = True
|
shared.stop_everything = True
|
||||||
|
|
||||||
def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1, regenerate=False):
|
def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1, regenerate=False):
|
||||||
shared.stop_everything = False
|
shared.stop_everything = False
|
||||||
just_started = True
|
just_started = True
|
||||||
eos_token = '\n' if check else None
|
eos_token = '\n' if check else None
|
||||||
@ -127,7 +127,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
|
|||||||
# Generate
|
# Generate
|
||||||
reply = ''
|
reply = ''
|
||||||
for i in range(chat_generation_attempts):
|
for i in range(chat_generation_attempts):
|
||||||
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
||||||
|
|
||||||
# Extracting the reply
|
# Extracting the reply
|
||||||
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check)
|
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check)
|
||||||
@ -154,7 +154,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
|
|||||||
|
|
||||||
yield shared.history['visible']
|
yield shared.history['visible']
|
||||||
|
|
||||||
def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
||||||
eos_token = '\n' if check else None
|
eos_token = '\n' if check else None
|
||||||
|
|
||||||
if 'pygmalion' in shared.model_name.lower():
|
if 'pygmalion' in shared.model_name.lower():
|
||||||
@ -166,18 +166,18 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
|
|||||||
# Yield *Is typing...*
|
# Yield *Is typing...*
|
||||||
yield shared.processing_message
|
yield shared.processing_message
|
||||||
for i in range(chat_generation_attempts):
|
for i in range(chat_generation_attempts):
|
||||||
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
||||||
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
|
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
|
||||||
yield reply
|
yield reply
|
||||||
if next_character_found:
|
if next_character_found:
|
||||||
break
|
break
|
||||||
yield reply
|
yield reply
|
||||||
|
|
||||||
def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
||||||
for _history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts):
|
for _history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, check, chat_prompt_size, chat_generation_attempts):
|
||||||
yield generate_chat_html(_history, name1, name2, shared.character)
|
yield generate_chat_html(_history, name1, name2, shared.character)
|
||||||
|
|
||||||
def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
||||||
if (shared.character != 'None' and len(shared.history['visible']) == 1) or len(shared.history['internal']) == 0:
|
if (shared.character != 'None' and len(shared.history['visible']) == 1) or len(shared.history['internal']) == 0:
|
||||||
yield generate_chat_output(shared.history['visible'], name1, name2, shared.character)
|
yield generate_chat_output(shared.history['visible'], name1, name2, shared.character)
|
||||||
else:
|
else:
|
||||||
@ -185,7 +185,7 @@ def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typi
|
|||||||
last_internal = shared.history['internal'].pop()
|
last_internal = shared.history['internal'].pop()
|
||||||
# Yield '*Is typing...*'
|
# Yield '*Is typing...*'
|
||||||
yield generate_chat_output(shared.history['visible']+[[last_visible[0], shared.processing_message]], name1, name2, shared.character)
|
yield generate_chat_output(shared.history['visible']+[[last_visible[0], shared.processing_message]], name1, name2, shared.character)
|
||||||
for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts, regenerate=True):
|
for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, check, chat_prompt_size, chat_generation_attempts, regenerate=True):
|
||||||
if shared.args.cai_chat:
|
if shared.args.cai_chat:
|
||||||
shared.history['visible'][-1] = [last_visible[0], _history[-1][1]]
|
shared.history['visible'][-1] = [last_visible[0], _history[-1][1]]
|
||||||
else:
|
else:
|
||||||
|
@ -93,8 +93,15 @@ def clear_torch_cache():
|
|||||||
if not shared.args.cpu:
|
if not shared.args.cpu:
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
|
def set_manual_seed(seed):
|
||||||
|
if seed != -1:
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.manual_seed_all(seed)
|
||||||
|
|
||||||
|
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=None, stopping_string=None):
|
||||||
clear_torch_cache()
|
clear_torch_cache()
|
||||||
|
set_manual_seed(seed)
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
|
||||||
# These models are not part of Hugging Face, so we handle them
|
# These models are not part of Hugging Face, so we handle them
|
||||||
|
16
server.py
16
server.py
@ -130,10 +130,6 @@ def create_model_and_preset_menus():
|
|||||||
def create_settings_menus(default_preset):
|
def create_settings_menus(default_preset):
|
||||||
generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive', return_dict=True)
|
generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive', return_dict=True)
|
||||||
|
|
||||||
with gr.Row():
|
|
||||||
shared.gradio['preset_menu_mirror'] = gr.Dropdown(choices=available_presets, value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
|
|
||||||
ui.create_refresh_button(shared.gradio['preset_menu_mirror'], lambda : None, lambda : {'choices': get_available_presets()}, 'refresh-button')
|
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
with gr.Box():
|
with gr.Box():
|
||||||
@ -164,6 +160,12 @@ def create_settings_menus(default_preset):
|
|||||||
shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
|
shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
|
||||||
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')
|
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')
|
||||||
|
|
||||||
|
shared.gradio['seed'] = gr.Number(value=-1, label='Seed (-1 for random)')
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
shared.gradio['preset_menu_mirror'] = gr.Dropdown(choices=available_presets, value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
|
||||||
|
ui.create_refresh_button(shared.gradio['preset_menu_mirror'], lambda : None, lambda : {'choices': get_available_presets()}, 'refresh-button')
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
shared.gradio['lora_menu'] = gr.Dropdown(choices=available_loras, value=shared.lora_name, label='LoRA')
|
shared.gradio['lora_menu'] = gr.Dropdown(choices=available_loras, value=shared.lora_name, label='LoRA')
|
||||||
ui.create_refresh_button(shared.gradio['lora_menu'], lambda : None, lambda : {'choices': get_available_loras()}, 'refresh-button')
|
ui.create_refresh_button(shared.gradio['lora_menu'], lambda : None, lambda : {'choices': get_available_loras()}, 'refresh-button')
|
||||||
@ -330,7 +332,7 @@ def create_interface():
|
|||||||
create_settings_menus(default_preset)
|
create_settings_menus(default_preset)
|
||||||
|
|
||||||
function_call = 'chat.cai_chatbot_wrapper' if shared.args.cai_chat else 'chat.chatbot_wrapper'
|
function_call = 'chat.cai_chatbot_wrapper' if shared.args.cai_chat else 'chat.chatbot_wrapper'
|
||||||
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
|
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
|
||||||
|
|
||||||
gen_events.append(shared.gradio['Generate'].click(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
|
gen_events.append(shared.gradio['Generate'].click(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
|
||||||
gen_events.append(shared.gradio['textbox'].submit(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
|
gen_events.append(shared.gradio['textbox'].submit(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
|
||||||
@ -393,7 +395,7 @@ def create_interface():
|
|||||||
with gr.Tab("Parameters", elem_id="parameters"):
|
with gr.Tab("Parameters", elem_id="parameters"):
|
||||||
create_settings_menus(default_preset)
|
create_settings_menus(default_preset)
|
||||||
|
|
||||||
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
|
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed']]
|
||||||
output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']]
|
output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']]
|
||||||
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
|
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
|
||||||
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
|
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
|
||||||
@ -425,7 +427,7 @@ def create_interface():
|
|||||||
with gr.Tab("Parameters", elem_id="parameters"):
|
with gr.Tab("Parameters", elem_id="parameters"):
|
||||||
create_settings_menus(default_preset)
|
create_settings_menus(default_preset)
|
||||||
|
|
||||||
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
|
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed']]
|
||||||
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
|
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
|
||||||
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
|
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
|
||||||
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
|
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
|
||||||
|
Loading…
Reference in New Issue
Block a user