Merge branch 'oobabooga:main' into exllama-module

This commit is contained in:
jllllll 2023-06-21 14:15:08 -05:00 committed by GitHub
commit 6254203f84
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 225 additions and 109 deletions

View File

@ -212,7 +212,7 @@ Optionally, you can use the following command-line flags:
| Flag | Description |
|--------------------------------------------|-------------|
| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, llamacpp, rwkv, flexgen |
| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, flexgen |
#### Accelerate/transformers

View File

@ -0,0 +1,4 @@
user: "<|user|>"
bot: "<|assistant|>"
context: "<|system|>\n<|end|>\n"
turn_template: "<|user|>\n<|user-message|><|end|>\n<|bot|>\n<|bot-message|><|end|>\n"

View File

@ -0,0 +1,4 @@
user: "<|user|>"
bot: "<|assistant|>"
context: ""
turn_template: "<|user|>\n<|user-message|>\n<|bot|>\n<|bot-message|>\n"

View File

@ -93,3 +93,22 @@ div.svelte-362y77>*, div.svelte-362y77>.form>* {
.message-body :not(pre) > code {
white-space: normal !important;
}
@media print {
body {
visibility: hidden;
}
.chat {
visibility: visible;
position: absolute;
left: 0;
top: 0;
max-width: none;
max-height: none;
width: 100%;
height: fit-content;
display: flex;
flex-direction: column-reverse;
}
}

View File

@ -17,6 +17,10 @@
margin-bottom: 1.25em !important;
}
.message-body ul, .message-body ol {
margin-bottom: 1.25em !important;
}
.dark .message-body p em {
color: rgb(198, 202, 214) !important;
}

View File

@ -26,7 +26,7 @@ LABEL maintainer="Your Name <your.email@example.com>"
LABEL description="Docker image for GPTQ-for-LLaMa and Text Generation WebUI"
RUN apt-get update && \
apt-get install --no-install-recommends -y libportaudio2 libasound-dev git python3 python3-pip make g++ && \
apt-get install --no-install-recommends -y python3-dev libportaudio2 libasound-dev git python3 python3-pip make g++ && \
rm -rf /var/lib/apt/lists/*
RUN --mount=type=cache,target=/root/.cache/pip pip3 install virtualenv

View File

@ -1,5 +1,5 @@
'''
Downloads models from Hugging Face to models/model-name.
Downloads models from Hugging Face to models/username_modelname.
Example:
python download-model.py facebook/opt-1.3b
@ -11,8 +11,8 @@ import base64
import datetime
import hashlib
import json
import re
import os
import re
import sys
from pathlib import Path
@ -21,63 +21,12 @@ import tqdm
from tqdm.contrib.concurrent import thread_map
def select_model_from_default_options():
models = {
"OPT 6.7B": ("facebook", "opt-6.7b", "main"),
"OPT 2.7B": ("facebook", "opt-2.7b", "main"),
"OPT 1.3B": ("facebook", "opt-1.3b", "main"),
"OPT 350M": ("facebook", "opt-350m", "main"),
"GALACTICA 6.7B": ("facebook", "galactica-6.7b", "main"),
"GALACTICA 1.3B": ("facebook", "galactica-1.3b", "main"),
"GALACTICA 125M": ("facebook", "galactica-125m", "main"),
"Pythia-6.9B-deduped": ("EleutherAI", "pythia-6.9b-deduped", "main"),
"Pythia-2.8B-deduped": ("EleutherAI", "pythia-2.8b-deduped", "main"),
"Pythia-1.4B-deduped": ("EleutherAI", "pythia-1.4b-deduped", "main"),
"Pythia-410M-deduped": ("EleutherAI", "pythia-410m-deduped", "main"),
}
choices = {}
print("Select the model that you want to download:\n")
for i, name in enumerate(models):
char = chr(ord('A') + i)
choices[char] = name
print(f"{char}) {name}")
char_hugging = chr(ord('A') + len(models))
print(f"{char_hugging}) Manually specify a Hugging Face model")
char_exit = chr(ord('A') + len(models) + 1)
print(f"{char_exit}) Do not download a model")
print()
print("Input> ", end='')
choice = input()[0].strip().upper()
if choice == char_exit:
exit()
elif choice == char_hugging:
print("""\nType the name of your desired Hugging Face model in the format organization/name.
Examples:
facebook/opt-1.3b
EleutherAI/pythia-1.4b-deduped
""")
print("Input> ", end='')
model = input()
branch = "main"
else:
arr = models[choices[choice]]
model = f"{arr[0]}/{arr[1]}"
branch = arr[2]
return model, branch
class ModelDownloader:
def __init__(self):
self.s = requests.Session()
if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None:
self.s.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS'))
def sanitize_model_and_branch_names(self, model, branch):
if model[-1] == '/':
model = model[:-1]
@ -92,7 +41,6 @@ class ModelDownloader:
return model, branch
def get_download_links_from_huggingface(self, model, branch, text_only=False):
base = "https://huggingface.co"
page = f"/api/models/{model}/tree/{branch}"
@ -163,7 +111,6 @@ class ModelDownloader:
return links, sha256, is_lora
def get_output_folder(self, model, branch, is_lora, base_folder=None):
if base_folder is None:
base_folder = 'models' if not is_lora else 'loras'
@ -171,59 +118,64 @@ class ModelDownloader:
output_folder = f"{'_'.join(model.split('/')[-2:])}"
if branch != 'main':
output_folder += f'_{branch}'
output_folder = Path(base_folder) / output_folder
return output_folder
def get_single_file(self, url, output_folder, start_from_scratch=False):
filename = Path(url.rsplit('/', 1)[1])
output_path = output_folder / filename
headers = {}
mode = 'wb'
if output_path.exists() and not start_from_scratch:
# Check if the file has already been downloaded completely
r = self.s.get(url, stream=True, timeout=20)
total_size = int(r.headers.get('content-length', 0))
if output_path.stat().st_size >= total_size:
return
# Otherwise, resume the download from where it left off
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
mode = 'ab'
else:
headers = {}
mode = 'wb'
r = self.s.get(url, stream=True, headers=headers, timeout=20)
with open(output_path, mode) as f:
with self.s.get(url, stream=True, headers=headers, timeout=20) as r:
r.raise_for_status() # Do not continue the download if the request was unsuccessful
total_size = int(r.headers.get('content-length', 0))
block_size = 1024
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
for data in r.iter_content(block_size):
t.update(len(data))
f.write(data)
block_size = 1024 * 1024 # 1MB
with open(output_path, mode) as f:
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
count = 0
for data in r.iter_content(block_size):
t.update(len(data))
f.write(data)
if total_size != 0 and self.progress_bar is not None:
count += len(data)
self.progress_bar(float(count) / float(total_size), f"Downloading {filename}")
def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=1):
thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
def download_model_files(self, model, branch, links, sha256, output_folder, progress_bar=None, start_from_scratch=False, threads=1):
self.progress_bar = progress_bar
def download_model_files(self, model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1):
# Creating the folder and writing the metadata
if not output_folder.exists():
output_folder.mkdir(parents=True, exist_ok=True)
with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
f.write(f'url: https://huggingface.co/{model}\n')
f.write(f'branch: {branch}\n')
f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
sha256_str = ''
for i in range(len(sha256)):
sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n'
if sha256_str != '':
f.write(f'sha256sum:\n{sha256_str}')
output_folder.mkdir(parents=True, exist_ok=True)
metadata = f'url: https://huggingface.co/{model}\n' \
f'branch: {branch}\n' \
f'download date: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n'
sha256_str = '\n'.join([f' {item[1]} {item[0]}' for item in sha256])
if sha256_str:
metadata += f'sha256sum:\n{sha256_str}'
metadata += '\n'
(output_folder / 'huggingface-metadata.txt').write_text(metadata)
# Downloading the files
print(f"Downloading the model to {output_folder}")
self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
def check_model_files(self, model, branch, links, sha256, output_folder):
# Validate the checksums
validated = True
@ -264,8 +216,6 @@ if __name__ == '__main__':
branch = args.branch
model = args.MODEL
if model is None:
model, branch = select_model_from_default_options()
downloader = ModelDownloader()
# Cleaning up the model/branch names

View File

@ -50,7 +50,7 @@ llama-65b-gptq-3bit:
.*vicuna.*v0:
mode: 'instruct'
instruction_template: 'Vicuna-v0'
.*vicuna.*(1.1|1_1):
.*vicuna.*(1.1|1_1|1.3|1_3):
mode: 'instruct'
instruction_template: 'Vicuna-v1.1'
.*wizard.*vicuna:
@ -184,7 +184,7 @@ llama-65b-gptq-3bit:
.*Nous-Hermes-13b:
mode: 'instruct'
instruction_template: 'Alpaca'
.*airoboros-13b-gpt4:
.*airoboros:
mode: 'instruct'
instruction_template: 'Vicuna-v1.1'
.*WizardLM-30B-V1.0:
@ -193,7 +193,7 @@ llama-65b-gptq-3bit:
TheBloke_WizardLM-30B-GPTQ:
mode: 'instruct'
instruction_template: 'Vicuna-v1.1'
.*(A|a)lpa(cino|sta):
.*alpa(cino|sta):
mode: 'instruct'
instruction_template: 'Alpaca'
.*hippogriff:
@ -202,9 +202,33 @@ TheBloke_WizardLM-30B-GPTQ:
.*gpt4all-.*-snoozy:
mode: 'instruct'
instruction_template: 'WizardLM'
.*(L|l)azarus:
.*lazarus:
mode: 'instruct'
instruction_template: 'Alpaca'
.*(G|g)uanaco-.*(7|13|33|65)(b|B):
.*guanaco-.*(7|13|33|65)b:
mode: 'instruct'
instruction_template: 'Guanaco'
.*hypermantis:
mode: 'instruct'
instruction_template: 'Alpaca'
.*open-llama-.*-open-instruct:
mode: 'instruct'
instruction_template: 'Alpaca'
.*starcoder-gpteacher-code-instruct:
mode: 'instruct'
instruction_template: 'Alpaca'
.*tulu:
mode: 'instruct'
instruction_template: 'Tulu'
.*chronos:
mode: 'instruct'
instruction_template: 'Alpaca'
.*samantha:
mode: 'instruct'
instruction_template: 'Samantha'
.*wizardcoder:
mode: 'instruct'
instruction_template: 'Alpaca'
.*starchat-beta:
mode: 'instruct'
instruction_template: 'Starchat-Beta'

82
modules/exllama_hf.py Normal file
View File

@ -0,0 +1,82 @@
import os
import sys
from pathlib import Path
from typing import *
import torch
from transformers import (
GenerationConfig,
LlamaTokenizer,
PretrainedConfig,
PreTrainedModel
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from modules import shared
from modules.logging_colors import logger
from modules.relative_imports import RelativeImport
with RelativeImport("repositories/exllama"):
from model import ExLlama, ExLlamaCache, ExLlamaConfig
class ExllamaHF(PreTrainedModel):
def __init__(self, config: ExLlamaConfig):
super().__init__(PretrainedConfig())
self.ex_config = config
self.ex_model = ExLlama(self.ex_config)
self.generation_config = GenerationConfig()
def _validate_model_class(self):
pass
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
pass
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, **kwargs}
@property
def device(self) -> torch.device:
# TODO: May cause problem on multi-gpu inference?
return torch.device(0)
def __call__(self, *args, **kwargs):
# TODO: Some decoding methods (such as Contrastive Search) may not work at this time
assert len(args) == 0, 'no *args should be passed to forward'
use_cache = kwargs['use_cache']
seq = kwargs['input_ids'][0].tolist()
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None
if cache is None:
cache = ExLlamaCache(self.ex_model)
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True)
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache).to(self.device)
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
if isinstance(pretrained_model_name_or_path, str):
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
config = ExLlamaConfig(pretrained_model_name_or_path / 'config.json')
# from 'oobabooga/text-generation-webui/modules/exllama.py'
weight_path = None
for ext in ['.safetensors', '.pt', '.bin']:
found = list(pretrained_model_name_or_path.glob(f"*{ext}"))
if len(found) > 0:
weight_path = found[-1]
break
assert weight_path is not None, f'could not find weight in "{pretrained_model_name_or_path}"'
config.model_path = str(weight_path)
# This slowes down a bit but align better with autogptq generation.
# TODO: Should give user choice to tune the exllama config
config.act_order = True
config.fused_attn = False
config.fused_mlp_thd = 0
return ExllamaHF(config)

View File

@ -52,9 +52,9 @@ class LlamaCppModel:
'n_gpu_layers': shared.args.n_gpu_layers
}
self.model = Llama(**params)
result.model = Llama(**params)
if cache_capacity > 0:
self.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
# This is ugly, but the model and the tokenizer are the same object in this library.
return result, result

View File

@ -55,6 +55,10 @@ loaders_and_params = {
'ExLlama' : [
'gpu_split',
'exllama_info',
],
'ExLlama_HF' : [
'gpu_split',
'exllama_HF_info',
]
}

View File

@ -49,7 +49,8 @@ def load_model(model_name, loader=None):
'llama.cpp': llamacpp_loader,
'FlexGen': flexgen_loader,
'RWKV': RWKV_loader,
'ExLlama': ExLlama_loader
'ExLlama': ExLlama_loader,
'ExLlama_HF': ExLlama_HF_loader
}
if loader is None:
@ -278,6 +279,12 @@ def ExLlama_loader(model_name):
return model, tokenizer
def ExLlama_HF_loader(model_name):
from modules.exllama_hf import ExllamaHF
return ExllamaHF.from_pretrained(model_name)
def get_max_memory_dict():
max_memory = {}
if shared.args.gpu_memory:

View File

@ -98,7 +98,7 @@ parser.add_argument('--extensions', type=str, nargs="+", help='The list of exten
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
# Model loader
parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, llamacpp, rwkv, flexgen')
parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, flexgen')
# Accelerate/transformers
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
@ -218,6 +218,8 @@ def fix_loader_name(name):
return 'GPTQ-for-LLaMa'
elif name in ['exllama', 'ex-llama', 'ex_llama', 'exlama']:
return 'ExLlama'
elif name in ['exllama-hf', 'exllama_hf', 'exllama hf', 'ex-llama-hf', 'ex_llama_hf']:
return 'ExLlama_HF'
if args.loader is not None:

View File

@ -104,9 +104,8 @@ def get_reply_from_output_ids(output_ids, input_ids, original_question, state, i
else:
new_tokens = len(output_ids) - len(input_ids[0])
reply = decode(output_ids[-new_tokens:], state['skip_special_tokens'])
# Prevent LlamaTokenizer from skipping a space
if type(shared.tokenizer) is transformers.LlamaTokenizer and len(output_ids) > 0:
if type(shared.tokenizer) in [transformers.LlamaTokenizer, transformers.LlamaTokenizerFast] and len(output_ids) > 0:
if shared.tokenizer.convert_ids_to_tokens(int(output_ids[-new_tokens])).startswith(''):
reply = ' ' + reply

View File

@ -11,7 +11,7 @@ import gradio as gr
import torch
import transformers
from datasets import Dataset, load_dataset
from peft import (LoraConfig, get_peft_model, prepare_model_for_int8_training,
from peft import (LoraConfig, get_peft_model, prepare_model_for_kbit_training,
set_peft_model_state_dict)
from modules import shared, ui, utils
@ -30,14 +30,17 @@ try:
MODEL_CLASSES = {v: k for k, v in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES}
except:
standard_modules = ["q_proj", "v_proj"]
model_to_lora_modules = {"llama": standard_modules, "opt": standard_modules, "gptj": standard_modules, "gpt_neox": ["query_key_value"]}
model_to_lora_modules = {"llama": standard_modules, "opt": standard_modules, "gptj": standard_modules, "gpt_neox": ["query_key_value"], "rw":["query_key_value"]}
MODEL_CLASSES = {
"LlamaForCausalLM": "llama",
"OPTForCausalLM": "opt",
"GPTJForCausalLM": "gptj",
"GPTNeoXForCausalLM": "gpt_neox"
"GPTNeoXForCausalLM": "gpt_neox",
"RWForCausalLM": "rw"
}
train_log = {}
WANT_INTERRUPT = False
PARAMETERS = ["lora_name", "always_override", "save_steps", "micro_batch_size", "batch_size", "epochs", "learning_rate", "lr_scheduler_type", "lora_rank", "lora_alpha", "lora_dropout", "cutoff_len", "dataset", "eval_dataset", "format", "eval_steps", "raw_text_file", "overlap_len", "newline_favor_len", "higher_rank_limit", "warmup_steps", "optimizer", "hard_cut_string", "train_only_after"]
@ -357,7 +360,7 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
# == Start prepping the model itself ==
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
logger.info("Getting model ready...")
prepare_model_for_int8_training(shared.model)
prepare_model_for_kbit_training(shared.model)
logger.info("Prepping for training...")
config = LoraConfig(
@ -406,6 +409,10 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
control.should_training_stop = True
elif state.global_step > 0 and actual_save_steps > 0 and state.global_step % actual_save_steps == 0:
lora_model.save_pretrained(f"{lora_file_path}/checkpoint-{tracked.current_steps}/")
# Save log
with open(f"{lora_file_path}/checkpoint-{tracked.current_steps}/training_log.json", 'w', encoding='utf-8') as file:
json.dump(train_log, file, indent=2)
def on_substep_end(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
tracked.current_steps += 1
@ -413,6 +420,9 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
control.should_epoch_stop = True
control.should_training_stop = True
def on_log(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, logs, **kwargs):
train_log.update(logs)
trainer = transformers.Trainer(
model=lora_model,
train_dataset=train_data,
@ -448,7 +458,7 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
# == Save parameters for reuse ==
with open(f"{lora_file_path}/training_parameters.json", 'w', encoding='utf-8') as file:
vars = locals()
json.dump({x: vars[x] for x in PARAMETERS}, file)
json.dump({x: vars[x] for x in PARAMETERS}, file, indent=2)
# == Main run and monitor loop ==
logger.info("Starting training...")
@ -462,7 +472,9 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
# Note: save in the thread in case the gradio thread breaks (eg browser closed)
lora_model.save_pretrained(lora_file_path)
logger.info("LoRA training run is completed and saved.")
tracked.did_save = True
# Save log
with open(f"{lora_file_path}/training_log.json", 'w', encoding='utf-8') as file:
json.dump(train_log, file, indent=2)
thread = threading.Thread(target=threaded_run)
thread.start()

View File

@ -17,10 +17,10 @@ tqdm
scipy
transformers==4.30.2
git+https://github.com/huggingface/peft@03eb378eb914fbee709ff7c86ba5b1d033b89524
bitsandbytes==0.39.0; platform_system != "Windows"
https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.39.0-py3-none-any.whl; platform_system == "Windows"
llama-cpp-python==0.1.62; platform_system != "Windows"
https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.62/llama_cpp_python-0.1.62-cp310-cp310-win_amd64.whl; platform_system == "Windows"
bitsandbytes==0.39.1; platform_system != "Windows"
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl; platform_system == "Windows"
llama-cpp-python==0.1.64; platform_system != "Windows"
https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.64/llama_cpp_python-0.1.64-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/jllllll/exllama/releases/download/0.0.1/exllama-0.0.1+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"

View File

@ -122,7 +122,7 @@ def count_tokens(text):
return 'Couldn\'t count the number of tokens. Is a tokenizer loaded?'
def download_model_wrapper(repo_id):
def download_model_wrapper(repo_id, progress=gr.Progress()):
try:
downloader_module = importlib.import_module("download-model")
downloader = downloader_module.ModelDownloader()
@ -131,6 +131,7 @@ def download_model_wrapper(repo_id):
branch = repo_id_parts[1] if len(repo_id_parts) > 1 else "main"
check = False
progress(0.0)
yield ("Cleaning up the model/branch names")
model, branch = downloader.sanitize_model_and_branch_names(model, branch)
@ -141,13 +142,16 @@ def download_model_wrapper(repo_id):
output_folder = downloader.get_output_folder(model, branch, is_lora)
if check:
progress(0.5)
yield ("Checking previously downloaded files")
downloader.check_model_files(model, branch, links, sha256, output_folder)
progress(1.0)
else:
yield (f"Downloading files to {output_folder}")
downloader.download_model_files(model, branch, links, sha256, output_folder, threads=1)
downloader.download_model_files(model, branch, links, sha256, output_folder, progress_bar=progress, threads=1)
yield ("Done!")
except:
progress(1.0)
yield traceback.format_exc()
@ -193,7 +197,7 @@ def create_model_menus():
with gr.Row():
with gr.Column():
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "AutoGPTQ", "GPTQ-for-LLaMa", "ExLlama", "llama.cpp"], value=None)
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "AutoGPTQ", "GPTQ-for-LLaMa", "ExLlama", "ExLlama_HF", "llama.cpp"], value=None)
with gr.Box():
with gr.Row():
with gr.Column():
@ -233,6 +237,7 @@ def create_model_menus():
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
shared.gradio['exllama_info'] = gr.Markdown('ExLlama has to be installed manually. See the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s still a bit buggy, so feel free to help out by fixing issues.\n\nCheck out PR [#2777](https://github.com/oobabooga/text-generation-webui/pull/2777) for more details.')
with gr.Column():
with gr.Row():
@ -276,7 +281,7 @@ def create_model_menus():
save_model_settings, [shared.gradio[k] for k in ['model_menu', 'interface_state']], shared.gradio['model_status'], show_progress=False)
shared.gradio['lora_menu_apply'].click(load_lora_wrapper, shared.gradio['lora_menu'], shared.gradio['model_status'], show_progress=False)
shared.gradio['download_model_button'].click(download_model_wrapper, shared.gradio['custom_model_menu'], shared.gradio['model_status'], show_progress=False)
shared.gradio['download_model_button'].click(download_model_wrapper, shared.gradio['custom_model_menu'], shared.gradio['model_status'], show_progress=True)
shared.gradio['autoload_model'].change(lambda x: gr.update(visible=not x), shared.gradio['autoload_model'], load)