mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Clean up the transformers loader
This commit is contained in:
parent
36c38d7561
commit
63de9eb24f
@ -2,6 +2,7 @@ import gc
|
|||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
import time
|
import time
|
||||||
|
import traceback
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
@ -117,12 +118,17 @@ def load_tokenizer(model_name, model):
|
|||||||
def huggingface_loader(model_name):
|
def huggingface_loader(model_name):
|
||||||
|
|
||||||
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
|
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
|
||||||
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
|
params = {
|
||||||
|
'low_cpu_mem_usage': True,
|
||||||
|
'trust_remote_code': shared.args.trust_remote_code,
|
||||||
|
'torch_dtype': torch.bfloat16 if shared.args.bf16 else torch.float16
|
||||||
|
}
|
||||||
|
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=params['trust_remote_code'])
|
||||||
|
|
||||||
if 'chatglm' in model_name.lower():
|
if 'chatglm' in model_name.lower():
|
||||||
LoaderClass = AutoModel
|
LoaderClass = AutoModel
|
||||||
else:
|
else:
|
||||||
if config.to_dict().get("is_encoder_decoder", False):
|
if config.to_dict().get('is_encoder_decoder', False):
|
||||||
LoaderClass = AutoModelForSeq2SeqLM
|
LoaderClass = AutoModelForSeq2SeqLM
|
||||||
shared.is_seq2seq = True
|
shared.is_seq2seq = True
|
||||||
else:
|
else:
|
||||||
@ -130,7 +136,7 @@ def huggingface_loader(model_name):
|
|||||||
|
|
||||||
# Load the model in simple 16-bit mode by default
|
# Load the model in simple 16-bit mode by default
|
||||||
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.compress_pos_emb > 1, shared.args.alpha_value > 1, shared.args.disable_exllama]):
|
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.compress_pos_emb > 1, shared.args.alpha_value > 1, shared.args.disable_exllama]):
|
||||||
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16, trust_remote_code=shared.args.trust_remote_code)
|
model = LoaderClass.from_pretrained(path_to_model, **params)
|
||||||
if torch.backends.mps.is_available():
|
if torch.backends.mps.is_available():
|
||||||
device = torch.device('mps')
|
device = torch.device('mps')
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
@ -139,28 +145,23 @@ def huggingface_loader(model_name):
|
|||||||
|
|
||||||
# DeepSpeed ZeRO-3
|
# DeepSpeed ZeRO-3
|
||||||
elif shared.args.deepspeed:
|
elif shared.args.deepspeed:
|
||||||
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
|
model = LoaderClass.from_pretrained(path_to_model, torch_dtype=params['torch_dtype'])
|
||||||
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
|
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
|
||||||
model.module.eval() # Inference
|
model.module.eval() # Inference
|
||||||
logger.info(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
|
logger.info(f'DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}')
|
||||||
|
|
||||||
# Custom
|
# Load with quantization and/or offloading
|
||||||
else:
|
else:
|
||||||
params = {
|
|
||||||
"low_cpu_mem_usage": True,
|
|
||||||
"trust_remote_code": shared.args.trust_remote_code
|
|
||||||
}
|
|
||||||
|
|
||||||
if not any((shared.args.cpu, torch.cuda.is_available(), torch.backends.mps.is_available())):
|
if not any((shared.args.cpu, torch.cuda.is_available(), torch.backends.mps.is_available())):
|
||||||
logger.warning("torch.cuda.is_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.")
|
logger.warning('torch.cuda.is_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.')
|
||||||
shared.args.cpu = True
|
shared.args.cpu = True
|
||||||
|
|
||||||
if shared.args.cpu:
|
if shared.args.cpu:
|
||||||
params["torch_dtype"] = torch.float32
|
params['torch_dtype'] = torch.float32
|
||||||
else:
|
else:
|
||||||
params["device_map"] = 'auto'
|
params['device_map'] = 'auto'
|
||||||
|
params['max_memory'] = get_max_memory_dict()
|
||||||
if shared.args.load_in_4bit:
|
if shared.args.load_in_4bit:
|
||||||
|
|
||||||
# See https://github.com/huggingface/transformers/pull/23479/files
|
# See https://github.com/huggingface/transformers/pull/23479/files
|
||||||
# and https://huggingface.co/blog/4bit-transformers-bitsandbytes
|
# and https://huggingface.co/blog/4bit-transformers-bitsandbytes
|
||||||
quantization_config_params = {
|
quantization_config_params = {
|
||||||
@ -170,7 +171,7 @@ def huggingface_loader(model_name):
|
|||||||
'bnb_4bit_use_double_quant': shared.args.use_double_quant,
|
'bnb_4bit_use_double_quant': shared.args.use_double_quant,
|
||||||
}
|
}
|
||||||
|
|
||||||
logger.warning("Using the following 4-bit params: " + str(quantization_config_params))
|
logger.info('Using the following 4-bit params: ' + str(quantization_config_params))
|
||||||
params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params)
|
params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params)
|
||||||
|
|
||||||
elif shared.args.load_in_8bit:
|
elif shared.args.load_in_8bit:
|
||||||
@ -178,14 +179,21 @@ def huggingface_loader(model_name):
|
|||||||
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
|
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
|
||||||
else:
|
else:
|
||||||
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
|
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
|
||||||
elif shared.args.bf16:
|
|
||||||
params["torch_dtype"] = torch.bfloat16
|
|
||||||
else:
|
|
||||||
params["torch_dtype"] = torch.float16
|
|
||||||
|
|
||||||
params['max_memory'] = get_max_memory_dict()
|
if params['max_memory'] is not None:
|
||||||
|
with init_empty_weights():
|
||||||
|
model = LoaderClass.from_config(config, trust_remote_code=params['trust_remote_code'])
|
||||||
|
|
||||||
|
model.tie_weights()
|
||||||
|
params['device_map'] = infer_auto_device_map(
|
||||||
|
model,
|
||||||
|
dtype=torch.int8,
|
||||||
|
max_memory=params['max_memory'],
|
||||||
|
no_split_module_classes=model._no_split_modules
|
||||||
|
)
|
||||||
|
|
||||||
if shared.args.disk:
|
if shared.args.disk:
|
||||||
params["offload_folder"] = shared.args.disk_cache_dir
|
params['offload_folder'] = shared.args.disk_cache_dir
|
||||||
|
|
||||||
if shared.args.disable_exllama:
|
if shared.args.disable_exllama:
|
||||||
try:
|
try:
|
||||||
@ -193,20 +201,9 @@ def huggingface_loader(model_name):
|
|||||||
params['quantization_config'] = gptq_config
|
params['quantization_config'] = gptq_config
|
||||||
logger.info('Loading with ExLlama kernel disabled.')
|
logger.info('Loading with ExLlama kernel disabled.')
|
||||||
except:
|
except:
|
||||||
|
exc = traceback.format_exc()
|
||||||
logger.error('Failed to disable exllama. Does the config.json for this model contain the necessary quantization info?')
|
logger.error('Failed to disable exllama. Does the config.json for this model contain the necessary quantization info?')
|
||||||
|
print(exc)
|
||||||
if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
|
|
||||||
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
|
|
||||||
with init_empty_weights():
|
|
||||||
model = LoaderClass.from_config(config, trust_remote_code=shared.args.trust_remote_code)
|
|
||||||
|
|
||||||
model.tie_weights()
|
|
||||||
params['device_map'] = infer_auto_device_map(
|
|
||||||
model,
|
|
||||||
dtype=torch.int8,
|
|
||||||
max_memory=params['max_memory'],
|
|
||||||
no_split_module_classes=model._no_split_modules
|
|
||||||
)
|
|
||||||
|
|
||||||
if shared.args.compress_pos_emb > 1:
|
if shared.args.compress_pos_emb > 1:
|
||||||
params['rope_scaling'] = {'type': 'linear', 'factor': shared.args.compress_pos_emb}
|
params['rope_scaling'] = {'type': 'linear', 'factor': shared.args.compress_pos_emb}
|
||||||
|
Loading…
Reference in New Issue
Block a user