mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Merge branch 'main' into nikita-skakun-optimize-download-model
This commit is contained in:
commit
6403e72062
50
README.md
50
README.md
@ -36,10 +36,32 @@ Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.
|
||||
|
||||
## Installation
|
||||
|
||||
The recommended installation methods are the following:
|
||||
### One-click installers
|
||||
|
||||
* Linux and MacOS: using conda natively.
|
||||
* Windows: using conda on WSL ([WSL installation guide](https://github.com/oobabooga/text-generation-webui/wiki/Windows-Subsystem-for-Linux-(Ubuntu)-Installation-Guide)).
|
||||
[oobabooga-windows.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga-windows.zip)
|
||||
|
||||
Just download the zip above, extract it, and double click on "install". The web UI and all its dependencies will be installed in the same folder.
|
||||
|
||||
* To download a model, double click on "download-model"
|
||||
* To start the web UI, double click on "start-webui"
|
||||
|
||||
Source codes: https://github.com/oobabooga/one-click-installers
|
||||
|
||||
> **Note**
|
||||
>
|
||||
> Thanks to [@jllllll](https://github.com/jllllll) and [@ClayShoaf](https://github.com/ClayShoaf), the Windows 1-click installer now sets up 8-bit and 4-bit requirements out of the box. No additional installation steps are necessary.
|
||||
|
||||
> **Note**
|
||||
>
|
||||
> There is no need to run the installer as admin.
|
||||
|
||||
### Manual installation using Conda
|
||||
|
||||
Recommended if you have some experience with the command-line.
|
||||
|
||||
On Windows, I additionally recommend carrying out the installation on WSL instead of the base system: [WSL installation guide](https://github.com/oobabooga/text-generation-webui/wiki/Windows-Subsystem-for-Linux-(Ubuntu)-Installation-Guide).
|
||||
|
||||
#### 0. Install Conda
|
||||
|
||||
Conda can be downloaded here: https://docs.conda.io/en/latest/miniconda.html
|
||||
|
||||
@ -84,26 +106,10 @@ pip install -r requirements.txt
|
||||
>
|
||||
> For bitsandbytes and `--load-in-8bit` to work on Linux/WSL, this dirty fix is currently necessary: https://github.com/oobabooga/text-generation-webui/issues/400#issuecomment-1474876859
|
||||
|
||||
### Alternative: one-click installers
|
||||
|
||||
[oobabooga-windows.zip](https://github.com/oobabooga/one-click-installers/archive/refs/heads/oobabooga-windows.zip)
|
||||
### Alternative: manual Windows installation
|
||||
|
||||
[oobabooga-linux.zip](https://github.com/oobabooga/one-click-installers/archive/refs/heads/oobabooga-linux.zip)
|
||||
|
||||
Just download the zip above, extract it, and double click on "install". The web UI and all its dependencies will be installed in the same folder.
|
||||
|
||||
* To download a model, double click on "download-model"
|
||||
* To start the web UI, double click on "start-webui"
|
||||
|
||||
Source codes: https://github.com/oobabooga/one-click-installers
|
||||
|
||||
> **Note**
|
||||
>
|
||||
> To get 8-bit and 4-bit models working in your 1-click Windows installation, you can use the [one-click-bandaid](https://github.com/ClayShoaf/oobabooga-one-click-bandaid).
|
||||
|
||||
### Alternative: native Windows installation
|
||||
|
||||
As an alternative to the recommended WSL method, you can install the web UI natively on Windows using this guide. It will be a lot harder and the performance may be slower: [Installation instructions for human beings](https://github.com/oobabooga/text-generation-webui/wiki/Installation-instructions-for-human-beings).
|
||||
As an alternative to the recommended WSL method, you can install the web UI natively on Windows using this guide. It will be a lot harder and the performance may be slower: [Windows installation guide](https://github.com/oobabooga/text-generation-webui/wiki/Windows-installation-guide).
|
||||
|
||||
### Alternative: Docker
|
||||
|
||||
@ -177,7 +183,7 @@ Optionally, you can use the following command-line flags:
|
||||
| `--cpu` | Use the CPU to generate text.|
|
||||
| `--load-in-8bit` | Load the model with 8-bit precision.|
|
||||
| `--wbits WBITS` | GPTQ: Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
|
||||
| `--model_type MODEL_TYPE` | GPTQ: Model type of pre-quantized model. Currently only LLaMA and OPT are supported. |
|
||||
| `--model_type MODEL_TYPE` | GPTQ: Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. |
|
||||
| `--groupsize GROUPSIZE` | GPTQ: Group size. |
|
||||
| `--pre_layer PRE_LAYER` | GPTQ: The number of layers to preload. |
|
||||
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
|
||||
|
@ -8,6 +8,7 @@ python download-model.py facebook/opt-1.3b
|
||||
|
||||
import argparse
|
||||
import base64
|
||||
import datetime
|
||||
import json
|
||||
import re
|
||||
import sys
|
||||
@ -17,6 +18,14 @@ import requests
|
||||
import tqdm
|
||||
from tqdm.contrib.concurrent import thread_map
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('MODEL', type=str, default=None, nargs='?')
|
||||
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
|
||||
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
|
||||
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
|
||||
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
|
||||
args = parser.parse_args()
|
||||
|
||||
def get_file(url, output_folder):
|
||||
r = requests.get(url, stream=True)
|
||||
with open(output_folder / Path(url.rsplit('/', 1)[1]), 'wb') as f:
|
||||
@ -165,13 +174,24 @@ if __name__ == '__main__':
|
||||
sys.exit()
|
||||
|
||||
links, is_lora = get_download_links_from_huggingface(model, branch)
|
||||
base_folder = 'models' if not is_lora else 'loras'
|
||||
if branch != 'main':
|
||||
output_folder = Path(base_folder) / (model.split('/')[-1] + f'_{branch}')
|
||||
|
||||
if args.output is not None:
|
||||
base_folder = args.output
|
||||
else:
|
||||
output_folder = Path(base_folder) / model.split('/')[-1]
|
||||
base_folder = 'models' if not is_lora else 'loras'
|
||||
|
||||
output_folder = f"{'_'.join(model.split('/')[-2:])}"
|
||||
if branch != 'main':
|
||||
output_folder += f'_{branch}'
|
||||
|
||||
# Creating the folder and writing the metadata
|
||||
output_folder = Path(base_folder) / output_folder
|
||||
if not output_folder.exists():
|
||||
output_folder.mkdir()
|
||||
with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
|
||||
f.write(f'url: https://huggingface.co/{model}\n')
|
||||
f.write(f'branch: {branch}\n')
|
||||
f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
|
||||
|
||||
# Downloading the files
|
||||
print(f"Downloading the model to {output_folder}")
|
||||
|
@ -4,15 +4,50 @@ from pathlib import Path
|
||||
|
||||
import accelerate
|
||||
import torch
|
||||
import transformers
|
||||
from transformers import AutoConfig, AutoModelForCausalLM
|
||||
|
||||
import modules.shared as shared
|
||||
|
||||
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
|
||||
import llama
|
||||
import llama_inference_offload
|
||||
import opt
|
||||
from modelutils import find_layers
|
||||
from quant import make_quant
|
||||
|
||||
|
||||
def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=['lm_head'], kernel_switch_threshold=128):
|
||||
config = AutoConfig.from_pretrained(model)
|
||||
def noop(*args, **kwargs):
|
||||
pass
|
||||
torch.nn.init.kaiming_uniform_ = noop
|
||||
torch.nn.init.uniform_ = noop
|
||||
torch.nn.init.normal_ = noop
|
||||
|
||||
torch.set_default_dtype(torch.half)
|
||||
transformers.modeling_utils._init_weights = False
|
||||
torch.set_default_dtype(torch.half)
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
torch.set_default_dtype(torch.float)
|
||||
model = model.eval()
|
||||
layers = find_layers(model)
|
||||
for name in exclude_layers:
|
||||
if name in layers:
|
||||
del layers[name]
|
||||
make_quant(model, layers, wbits, groupsize, faster=faster_kernel, kernel_switch_threshold=kernel_switch_threshold)
|
||||
|
||||
del layers
|
||||
|
||||
print('Loading model ...')
|
||||
if checkpoint.endswith('.safetensors'):
|
||||
from safetensors.torch import load_file as safe_load
|
||||
model.load_state_dict(safe_load(checkpoint))
|
||||
else:
|
||||
model.load_state_dict(torch.load(checkpoint))
|
||||
model.seqlen = 2048
|
||||
print('Done.')
|
||||
|
||||
return model
|
||||
|
||||
def load_quantized(model_name):
|
||||
if not shared.args.model_type:
|
||||
# Try to determine model type from model name
|
||||
@ -20,6 +55,8 @@ def load_quantized(model_name):
|
||||
model_type = 'llama'
|
||||
elif model_name.lower().startswith(('opt', 'galactica')):
|
||||
model_type = 'opt'
|
||||
elif model_name.lower().startswith(('gpt-j', 'pygmalion-6b')):
|
||||
model_type = 'gptj'
|
||||
else:
|
||||
print("Can't determine model type from model name. Please specify it manually using --model_type "
|
||||
"argument")
|
||||
@ -27,15 +64,12 @@ def load_quantized(model_name):
|
||||
else:
|
||||
model_type = shared.args.model_type.lower()
|
||||
|
||||
if model_type == 'llama':
|
||||
if not shared.args.pre_layer:
|
||||
load_quant = llama.load_quant
|
||||
else:
|
||||
if model_type == 'llama' and shared.args.pre_layer:
|
||||
load_quant = llama_inference_offload.load_quant
|
||||
elif model_type == 'opt':
|
||||
load_quant = opt.load_quant
|
||||
elif model_type in ('llama', 'opt', 'gptj'):
|
||||
load_quant = _load_quant
|
||||
else:
|
||||
print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported")
|
||||
print("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported")
|
||||
exit()
|
||||
|
||||
# Now we are going to try to locate the quantized model file.
|
||||
@ -75,7 +109,8 @@ def load_quantized(model_name):
|
||||
if shared.args.pre_layer:
|
||||
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer)
|
||||
else:
|
||||
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize)
|
||||
threshold = False if model_type == 'gptj' else 128
|
||||
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold)
|
||||
|
||||
# accelerate offload (doesn't work properly)
|
||||
if shared.args.gpu_memory:
|
||||
|
@ -1,4 +1,5 @@
|
||||
import gc
|
||||
import traceback
|
||||
from queue import Queue
|
||||
from threading import Thread
|
||||
|
||||
@ -63,6 +64,10 @@ class Iteratorize:
|
||||
ret = self.mfunc(callback=_callback, **self.kwargs)
|
||||
except ValueError:
|
||||
pass
|
||||
except:
|
||||
traceback.print_exc()
|
||||
pass
|
||||
|
||||
clear_torch_cache()
|
||||
self.q.put(self.sentinel)
|
||||
if self.c_callback:
|
||||
|
@ -7,7 +7,7 @@ import modules.shared as shared
|
||||
|
||||
state = {}
|
||||
available_extensions = []
|
||||
setup_called = False
|
||||
setup_called = set()
|
||||
|
||||
def load_extensions():
|
||||
global state
|
||||
@ -53,13 +53,12 @@ def create_extensions_block():
|
||||
should_display_ui = False
|
||||
|
||||
# Running setup function
|
||||
if not setup_called:
|
||||
for extension, name in iterator():
|
||||
if hasattr(extension, "setup"):
|
||||
extension.setup()
|
||||
if hasattr(extension, "ui"):
|
||||
should_display_ui = True
|
||||
setup_called = True
|
||||
if extension not in setup_called and hasattr(extension, "setup"):
|
||||
setup_called.add(extension)
|
||||
extension.setup()
|
||||
|
||||
# Creating the extension ui elements
|
||||
if should_display_ui:
|
||||
|
@ -84,7 +84,7 @@ parser.add_argument('--gptq-bits', type=int, default=0, help='DEPRECATED: use --
|
||||
parser.add_argument('--gptq-model-type', type=str, help='DEPRECATED: use --model_type instead.')
|
||||
parser.add_argument('--gptq-pre-layer', type=int, default=0, help='DEPRECATED: use --pre_layer instead.')
|
||||
parser.add_argument('--wbits', type=int, default=0, help='GPTQ: Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
||||
parser.add_argument('--model_type', type=str, help='GPTQ: Model type of pre-quantized model. Currently only LLaMA and OPT are supported.')
|
||||
parser.add_argument('--model_type', type=str, help='GPTQ: Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
|
||||
parser.add_argument('--groupsize', type=int, default=-1, help='GPTQ: Group size.')
|
||||
parser.add_argument('--pre_layer', type=int, default=0, help='GPTQ: The number of layers to preload.')
|
||||
|
||||
|
@ -2,6 +2,7 @@ import json
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
|
||||
import gradio as gr
|
||||
@ -119,7 +120,7 @@ def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int
|
||||
}
|
||||
|
||||
# == Prep the dataset, format, etc ==
|
||||
if raw_text_file is not None:
|
||||
if raw_text_file not in ['None', '']:
|
||||
print("Loading raw text file dataset...")
|
||||
with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r') as file:
|
||||
raw_text = file.read()
|
||||
@ -136,16 +137,17 @@ def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int
|
||||
del text_chunks
|
||||
|
||||
else:
|
||||
with open(clean_path('training/formats', f'{format}.json'), 'r') as formatFile:
|
||||
format_data: dict[str, str] = json.load(formatFile)
|
||||
|
||||
if dataset is None:
|
||||
if dataset in ['None', '']:
|
||||
yield "**Missing dataset choice input, cannot continue.**"
|
||||
return
|
||||
if format is None:
|
||||
|
||||
if format in ['None', '']:
|
||||
yield "**Missing format choice input, cannot continue.**"
|
||||
return
|
||||
|
||||
with open(clean_path('training/formats', f'{format}.json'), 'r') as formatFile:
|
||||
format_data: dict[str, str] = json.load(formatFile)
|
||||
|
||||
def generate_prompt(data_point: dict[str, str]):
|
||||
for options, data in format_data.items():
|
||||
if set(options.split(',')) == set(x[0] for x in data_point.items() if len(x[1].strip()) > 0):
|
||||
@ -183,7 +185,13 @@ def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM"
|
||||
)
|
||||
|
||||
try:
|
||||
lora_model = get_peft_model(shared.model, config)
|
||||
except:
|
||||
yield traceback.format_exc()
|
||||
return
|
||||
|
||||
trainer = transformers.Trainer(
|
||||
model=lora_model,
|
||||
train_dataset=train_data,
|
||||
|
Loading…
Reference in New Issue
Block a user