Merge pull request #3116 from oobabooga/dev

v1.1
This commit is contained in:
oobabooga 2023-07-12 15:55:40 -03:00 committed by GitHub
commit 6447b2eea6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
43 changed files with 1542 additions and 867 deletions

View File

@ -23,7 +23,8 @@ async def run(user_input, history):
'history': history, 'history': history,
'mode': 'instruct', # Valid options: 'chat', 'chat-instruct', 'instruct' 'mode': 'instruct', # Valid options: 'chat', 'chat-instruct', 'instruct'
'character': 'Example', 'character': 'Example',
'instruction_template': 'Vicuna-v1.1', 'instruction_template': 'Vicuna-v1.1', # Will get autodetected if unset
# 'context_instruct': '', # Optional
'your_name': 'You', 'your_name': 'You',
'regenerate': False, 'regenerate': False,

View File

@ -17,7 +17,8 @@ def run(user_input, history):
'history': history, 'history': history,
'mode': 'instruct', # Valid options: 'chat', 'chat-instruct', 'instruct' 'mode': 'instruct', # Valid options: 'chat', 'chat-instruct', 'instruct'
'character': 'Example', 'character': 'Example',
'instruction_template': 'Vicuna-v1.1', 'instruction_template': 'Vicuna-v1.1', # Will get autodetected if unset
# 'context_instruct': '', # Optional
'your_name': 'You', 'your_name': 'You',
'regenerate': False, 'regenerate': False,

View File

@ -4,8 +4,9 @@ import requests
HOST = '0.0.0.0:5000' HOST = '0.0.0.0:5000'
def generate(prompt, tokens = 200):
request = { 'prompt': prompt, 'max_new_tokens': tokens } def generate(prompt, tokens=200):
request = {'prompt': prompt, 'max_new_tokens': tokens}
response = requests.post(f'http://{HOST}/api/v1/generate', json=request) response = requests.post(f'http://{HOST}/api/v1/generate', json=request)
if response.status_code == 200: if response.status_code == 200:
@ -23,7 +24,7 @@ def print_basic_model_info(response):
print("Model: ", response['result']['model_name']) print("Model: ", response['result']['model_name'])
print("Lora(s): ", response['result']['lora_names']) print("Lora(s): ", response['result']['lora_names'])
for setting in basic_settings: for setting in basic_settings:
print(setting, "=", response['result']['shared.settings'][setting]) print(setting, "=", response['result']['shared.settings'][setting])
# model info # model info
@ -54,7 +55,7 @@ def complex_model_load(model):
'action': 'load', 'action': 'load',
'model_name': model, 'model_name': model,
'args': { 'args': {
'gptq_for_llama': False, # Use AutoGPTQ by default, set to True for gptq-for-llama 'loader': 'AutoGPTQ',
'bf16': False, 'bf16': False,
'load_in_8bit': False, 'load_in_8bit': False,
@ -75,17 +76,17 @@ def complex_model_load(model):
'rwkv_cuda_on': False, 'rwkv_cuda_on': False,
# b&b 4-bit # b&b 4-bit
#'load_in_4bit': False, # 'load_in_4bit': False,
#'compute_dtype': 'float16', # 'compute_dtype': 'float16',
#'quant_type': 'nf4', # 'quant_type': 'nf4',
#'use_double_quant': False, # 'use_double_quant': False,
#"cpu": false, # "cpu": false,
#"auto_devices": false, # "auto_devices": false,
#"gpu_memory": null, # "gpu_memory": null,
#"cpu_memory": null, # "cpu_memory": null,
#"disk": false, # "disk": false,
#"disk_cache_dir": "cache", # "disk_cache_dir": "cache",
}, },
} }
@ -104,26 +105,25 @@ def complex_model_load(model):
req['args']['load_in_8bit'] = True req['args']['load_in_8bit'] = True
elif '-hf' in model or 'fp16' in model: elif '-hf' in model or 'fp16' in model:
if '7b' in model: if '7b' in model:
req['args']['bf16'] = True # for 24GB req['args']['bf16'] = True # for 24GB
elif '13b' in model: elif '13b' in model:
req['args']['load_in_8bit'] = True # for 24GB req['args']['load_in_8bit'] = True # for 24GB
elif 'ggml' in model: elif 'ggml' in model:
#req['args']['threads'] = 16 # req['args']['threads'] = 16
if '7b' in model: if '7b' in model:
req['args']['n_gpu_layers'] = 100 req['args']['n_gpu_layers'] = 100
elif '13b' in model: elif '13b' in model:
req['args']['n_gpu_layers'] = 100 req['args']['n_gpu_layers'] = 100
elif '30b' in model or '33b' in model: elif '30b' in model or '33b' in model:
req['args']['n_gpu_layers'] = 59 # 24GB req['args']['n_gpu_layers'] = 59 # 24GB
elif '65b' in model: elif '65b' in model:
req['args']['n_gpu_layers'] = 42 # 24GB req['args']['n_gpu_layers'] = 42 # 24GB
elif 'rwkv' in model: elif 'rwkv' in model:
req['args']['rwkv_cuda_on'] = True req['args']['rwkv_cuda_on'] = True
if '14b' in model: if '14b' in model:
req['args']['rwkv_strategy'] = 'cuda f16i8' # 24GB req['args']['rwkv_strategy'] = 'cuda f16i8' # 24GB
else: else:
req['args']['rwkv_strategy'] = 'cuda f16' # 24GB req['args']['rwkv_strategy'] = 'cuda f16' # 24GB
return model_api(req) return model_api(req)
@ -134,7 +134,7 @@ if __name__ == '__main__':
resp = complex_model_load(model) resp = complex_model_load(model)
if 'error' in resp: if 'error' in resp:
print (f"{model} FAIL Error: {resp['error']['message']}") print(f"{model} FAIL Error: {resp['error']['message']}")
continue continue
else: else:
print_basic_model_info(resp) print_basic_model_info(resp)
@ -142,12 +142,12 @@ if __name__ == '__main__':
ans = generate("0,1,1,2,3,5,8,13,", tokens=2) ans = generate("0,1,1,2,3,5,8,13,", tokens=2)
if '21' in ans: if '21' in ans:
print (f"{model} PASS ({ans})") print(f"{model} PASS ({ans})")
else: else:
print (f"{model} FAIL ({ans})") print(f"{model} FAIL ({ans})")
except Exception as e: except Exception as e:
print (f"{model} FAIL Exception: {repr(e)}") print(f"{model} FAIL Exception: {repr(e)}")
# 0,1,1,2,3,5,8,13, is the fibonacci sequence, the next number is 21. # 0,1,1,2,3,5,8,13, is the fibonacci sequence, the next number is 21.

View File

@ -5,13 +5,13 @@ services:
context: . context: .
args: args:
# specify which cuda version your card supports: https://developer.nvidia.com/cuda-gpus # specify which cuda version your card supports: https://developer.nvidia.com/cuda-gpus
TORCH_CUDA_ARCH_LIST: ${TORCH_CUDA_ARCH_LIST} TORCH_CUDA_ARCH_LIST: ${TORCH_CUDA_ARCH_LIST:-7.5}
WEBUI_VERSION: ${WEBUI_VERSION} WEBUI_VERSION: ${WEBUI_VERSION:-HEAD}
env_file: .env env_file: .env
ports: ports:
- "${HOST_PORT}:${CONTAINER_PORT}" - "${HOST_PORT:-7860}:${CONTAINER_PORT:-7860}"
- "${HOST_API_PORT}:${CONTAINER_API_PORT}" - "${HOST_API_PORT:-5000}:${CONTAINER_API_PORT:-5000}"
- "${HOST_API_STREAM_PORT}:${CONTAINER_API_STREAM_PORT}" - "${HOST_API_STREAM_PORT:-5005}:${CONTAINER_API_STREAM_PORT:-5005}"
stdin_open: true stdin_open: true
tty: true tty: true
volumes: volumes:

View File

@ -23,13 +23,15 @@ from tqdm.contrib.concurrent import thread_map
class ModelDownloader: class ModelDownloader:
def __init__(self, max_retries = 5): def __init__(self, max_retries=5):
self.s = requests.Session() self.s = requests.Session()
if max_retries: if max_retries:
self.s.mount('https://cdn-lfs.huggingface.co', HTTPAdapter(max_retries=max_retries)) self.s.mount('https://cdn-lfs.huggingface.co', HTTPAdapter(max_retries=max_retries))
self.s.mount('https://huggingface.co', HTTPAdapter(max_retries=max_retries)) self.s.mount('https://huggingface.co', HTTPAdapter(max_retries=max_retries))
if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None: if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None:
self.s.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS')) self.s.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS'))
if os.getenv('HF_TOKEN') is not None:
self.s.headers = {'authorization': f'Bearer {os.getenv("HF_TOKEN")}'}
def sanitize_model_and_branch_names(self, model, branch): def sanitize_model_and_branch_names(self, model, branch):
if model[-1] == '/': if model[-1] == '/':
@ -77,7 +79,7 @@ class ModelDownloader:
is_safetensors = re.match(".*\.safetensors", fname) is_safetensors = re.match(".*\.safetensors", fname)
is_pt = re.match(".*\.pt", fname) is_pt = re.match(".*\.pt", fname)
is_ggml = re.match(".*ggml.*\.bin", fname) is_ggml = re.match(".*ggml.*\.bin", fname)
is_tokenizer = re.match("(tokenizer|ice).*\.model", fname) is_tokenizer = re.match("(tokenizer|ice|spiece).*\.model", fname)
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)): if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
if 'lfs' in dict[i]: if 'lfs' in dict[i]:

View File

@ -59,7 +59,10 @@ def build_parameters(body, chat=False):
if chat: if chat:
character = body.get('character') character = body.get('character')
instruction_template = body.get('instruction_template') instruction_template = body.get('instruction_template', shared.settings['instruction_template'])
if str(instruction_template) == "None":
instruction_template = "Vicuna-v1.1"
name1, name2, _, greeting, context, _ = load_character_memoized(character, str(body.get('your_name', shared.settings['name1'])), shared.settings['name2'], instruct=False) name1, name2, _, greeting, context, _ = load_character_memoized(character, str(body.get('your_name', shared.settings['name1'])), shared.settings['name2'], instruct=False)
name1_instruct, name2_instruct, _, _, context_instruct, turn_template = load_character_memoized(instruction_template, '', '', instruct=True) name1_instruct, name2_instruct, _, _, context_instruct, turn_template = load_character_memoized(instruction_template, '', '', instruct=True)
generate_params.update({ generate_params.update({
@ -72,7 +75,7 @@ def build_parameters(body, chat=False):
'greeting': greeting, 'greeting': greeting,
'name1_instruct': name1_instruct, 'name1_instruct': name1_instruct,
'name2_instruct': name2_instruct, 'name2_instruct': name2_instruct,
'context_instruct': context_instruct, 'context_instruct': body.get('context_instruct', context_instruct),
'turn_template': turn_template, 'turn_template': turn_template,
'chat-instruct_command': str(body.get('chat-instruct_command', shared.settings['chat-instruct_command'])), 'chat-instruct_command': str(body.get('chat-instruct_command', shared.settings['chat-instruct_command'])),
'history': body.get('history', {'internal': [], 'visible': []}) 'history': body.get('history', {'internal': [], 'visible': []})

View File

@ -6,6 +6,7 @@ import gradio as gr
from modules import chat, shared from modules import chat, shared
from modules.utils import gradio from modules.utils import gradio
from modules.logging_colors import logger
params = { params = {
'activate': True, 'activate': True,
@ -13,10 +14,12 @@ params = {
'selected_voice': 'None', 'selected_voice': 'None',
'autoplay': False, 'autoplay': False,
'show_text': True, 'show_text': True,
'model': 'eleven_monolingual_v1',
} }
voices = None voices = None
wav_idx = 0 wav_idx = 0
LANG_MODELS = ['eleven_monolingual_v1', 'eleven_multilingual_v1']
def update_api_key(key): def update_api_key(key):
@ -108,7 +111,7 @@ def output_modifier(string):
output_file = Path(f'extensions/elevenlabs_tts/outputs/{wav_idx:06d}.mp3'.format(wav_idx)) output_file = Path(f'extensions/elevenlabs_tts/outputs/{wav_idx:06d}.mp3'.format(wav_idx))
print(f'Outputting audio to {str(output_file)}') print(f'Outputting audio to {str(output_file)}')
try: try:
audio = elevenlabs.generate(text=string, voice=params['selected_voice'], model="eleven_monolingual_v1") audio = elevenlabs.generate(text=string, voice=params['selected_voice'], model=params['model'])
elevenlabs.save(audio, str(output_file)) elevenlabs.save(audio, str(output_file))
autoplay = 'autoplay' if params['autoplay'] else '' autoplay = 'autoplay' if params['autoplay'] else ''
@ -132,7 +135,12 @@ def ui():
global voices global voices
if not voices: if not voices:
voices = refresh_voices() voices = refresh_voices()
params['selected_voice'] = voices[0] selected = params['selected_voice']
if selected == 'None':
params['selected_voice'] = voices[0]
elif selected not in voices:
logger.error(f'Selected voice {selected} not available, switching to {voices[0]}')
params['selected_voice'] = voices[0]
# Gradio elements # Gradio elements
with gr.Row(): with gr.Row():
@ -145,7 +153,14 @@ def ui():
refresh = gr.Button(value='Refresh') refresh = gr.Button(value='Refresh')
with gr.Row(): with gr.Row():
api_key = gr.Textbox(placeholder="Enter your API key.", label='API Key') if params['api_key']:
api_key = gr.Textbox(value=params['api_key'], label='API Key')
update_api_key(params['api_key'])
else:
api_key = gr.Textbox(placeholder="Enter your API key.", label='API Key')
with gr.Row():
model = gr.Dropdown(value=params['model'], choices=LANG_MODELS, label='Language model')
with gr.Row(): with gr.Row():
convert = gr.Button('Permanently replace audios with the message texts') convert = gr.Button('Permanently replace audios with the message texts')
@ -175,6 +190,7 @@ def ui():
activate.change(lambda x: params.update({'activate': x}), activate, None) activate.change(lambda x: params.update({'activate': x}), activate, None)
voice.change(lambda x: params.update({'selected_voice': x}), voice, None) voice.change(lambda x: params.update({'selected_voice': x}), voice, None)
api_key.change(update_api_key, api_key, None) api_key.change(update_api_key, api_key, None)
model.change(lambda x: params.update({'model': x}), model, None)
# connect.click(check_valid_api, [], connection_status) # connect.click(check_valid_api, [], connection_status)
refresh.click(refresh_voices_dd, [], voice) refresh.click(refresh_voices_dd, [], voice)
# Event functions to update the parameters in the backend # Event functions to update the parameters in the backend

View File

@ -38,6 +38,8 @@ As of now, the following multimodal pipelines are supported:
|[LLaVA 7B](https://github.com/haotian-liu/LLaVA)|`llava-7b`|[LLaVA 7B](https://huggingface.co/wojtab/llava-7b-v0-4bit-128g)|GPTQ 4-bit quant, old CUDA|built-in| |[LLaVA 7B](https://github.com/haotian-liu/LLaVA)|`llava-7b`|[LLaVA 7B](https://huggingface.co/wojtab/llava-7b-v0-4bit-128g)|GPTQ 4-bit quant, old CUDA|built-in|
|[MiniGPT-4 7B](https://github.com/Vision-CAIR/MiniGPT-4)|`minigpt4-7b`|[Vicuna v0 7B](https://huggingface.co/TheBloke/vicuna-7B-GPTQ-4bit-128g)|GPTQ 4-bit quant, new format|[Wojtab/minigpt-4-pipeline](https://github.com/Wojtab/minigpt-4-pipeline)| |[MiniGPT-4 7B](https://github.com/Vision-CAIR/MiniGPT-4)|`minigpt4-7b`|[Vicuna v0 7B](https://huggingface.co/TheBloke/vicuna-7B-GPTQ-4bit-128g)|GPTQ 4-bit quant, new format|[Wojtab/minigpt-4-pipeline](https://github.com/Wojtab/minigpt-4-pipeline)|
|[MiniGPT-4 13B](https://github.com/Vision-CAIR/MiniGPT-4)|`minigpt4-13b`|[Vicuna v0 13B](https://huggingface.co/anon8231489123/vicuna-13b-GPTQ-4bit-128g)|GPTQ 4-bit quant, old CUDA|[Wojtab/minigpt-4-pipeline](https://github.com/Wojtab/minigpt-4-pipeline)| |[MiniGPT-4 13B](https://github.com/Vision-CAIR/MiniGPT-4)|`minigpt4-13b`|[Vicuna v0 13B](https://huggingface.co/anon8231489123/vicuna-13b-GPTQ-4bit-128g)|GPTQ 4-bit quant, old CUDA|[Wojtab/minigpt-4-pipeline](https://github.com/Wojtab/minigpt-4-pipeline)|
|[InstructBLIP 7B](https://github.com/salesforce/LAVIS/tree/main/projects/instructblip)|`instructblip-7b`|[Vicuna v1.1 7B](https://huggingface.co/TheBloke/vicuna-7B-1.1-GPTQ-4bit-128g)|GPTQ 4-bit quant|[kjerk/instructblip-pipeline](https://github.com/kjerk/instructblip-pipeline)|
|[InstructBLIP 13B](https://github.com/salesforce/LAVIS/tree/main/projects/instructblip)|`instructblip-13b`|[Vicuna v1.1 13B](https://huggingface.co/TheBloke/vicuna-13B-1.1-GPTQ-4bit-128g)|GPTQ 4-bit quant|[kjerk/instructblip-pipeline](https://github.com/kjerk/instructblip-pipeline)|
Some pipelines could support different LLMs but do note that while it might work, it isn't a supported configuration. Some pipelines could support different LLMs but do note that while it might work, it isn't a supported configuration.

View File

@ -22,6 +22,7 @@ options = {
'session_metadata': 'text-generation-webui', 'session_metadata': 'text-generation-webui',
} }
def ui(): def ui():
settings = shared.settings.get("ngrok") settings = shared.settings.get("ngrok")
if settings: if settings:
@ -33,4 +34,3 @@ def ui():
logging.info(f"Ingress established at: {tunnel.url()}") logging.info(f"Ingress established at: {tunnel.url()}")
except ModuleNotFoundError: except ModuleNotFoundError:
logging.error("===> ngrok library not found, please run `pip install -r extensions/ngrok/requirements.txt`") logging.error("===> ngrok library not found, please run `pip install -r extensions/ngrok/requirements.txt`")

View File

@ -218,12 +218,11 @@ but there are some exceptions.
| ✅❌ | langchain | https://github.com/hwchase17/langchain | OPENAI_API_BASE=http://127.0.0.1:5001/v1 even with a good 30B-4bit model the result is poor so far. It assumes zero shot python/json coding. Some model tailored prompt formatting improves results greatly. | | ✅❌ | langchain | https://github.com/hwchase17/langchain | OPENAI_API_BASE=http://127.0.0.1:5001/v1 even with a good 30B-4bit model the result is poor so far. It assumes zero shot python/json coding. Some model tailored prompt formatting improves results greatly. |
| ✅❌ | Auto-GPT | https://github.com/Significant-Gravitas/Auto-GPT | OPENAI_API_BASE=http://127.0.0.1:5001/v1 Same issues as langchain. Also assumes a 4k+ context | | ✅❌ | Auto-GPT | https://github.com/Significant-Gravitas/Auto-GPT | OPENAI_API_BASE=http://127.0.0.1:5001/v1 Same issues as langchain. Also assumes a 4k+ context |
| ✅❌ | babyagi | https://github.com/yoheinakajima/babyagi | OPENAI_API_BASE=http://127.0.0.1:5001/v1 | | ✅❌ | babyagi | https://github.com/yoheinakajima/babyagi | OPENAI_API_BASE=http://127.0.0.1:5001/v1 |
| ❌ | guidance | https://github.com/microsoft/guidance | logit_bias and logprobs not yet supported |
## Future plans ## Future plans
* better error handling
* model changing, esp. something for swapping loras or embedding models * model changing, esp. something for swapping loras or embedding models
* consider switching to FastAPI + starlette for SSE (openai SSE seems non-standard) * consider switching to FastAPI + starlette for SSE (openai SSE seems non-standard)
* do something about rate limiting or locking requests for completions, most systems will only be able handle a single request at a time before OOM
## Bugs? Feedback? Comments? Pull requests? ## Bugs? Feedback? Comments? Pull requests?

View File

@ -0,0 +1,597 @@
import time
import yaml
import tiktoken
import torch
import torch.nn.functional as F
from transformers import LogitsProcessor, LogitsProcessorList
from modules import shared
from modules.text_generation import encode, decode, generate_reply
from extensions.openai.defaults import get_default_req_params, default, clamp
from extensions.openai.utils import end_line, debug_msg
from extensions.openai.errors import *
# Thanks to @Cypherfox [Cypherfoxy] for the logits code, blame to @matatonic
class LogitsBiasProcessor(LogitsProcessor):
def __init__(self, logit_bias={}):
self.logit_bias = logit_bias
super().__init__()
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
if self.logit_bias:
keys = list([int(key) for key in self.logit_bias.keys()])
values = list([int(val) for val in self.logit_bias.values()])
logits[0, keys] += torch.tensor(values).cuda()
return logits
class LogprobProcessor(LogitsProcessor):
def __init__(self, logprobs=None):
self.logprobs = logprobs
self.token_alternatives = {}
super().__init__()
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
if self.logprobs is not None: # 0-5
log_e_probabilities = F.log_softmax(logits, dim=1)
# XXX hack. should find the selected token and include the prob of that
# ... but we just +1 here instead because we don't know it yet.
top_values, top_indices = torch.topk(log_e_probabilities, k=self.logprobs + 1)
top_tokens = [decode(tok) for tok in top_indices[0]]
self.token_alternatives = dict(zip(top_tokens, top_values[0].tolist()))
return logits
def convert_logprobs_to_tiktoken(model, logprobs):
try:
encoder = tiktoken.encoding_for_model(model)
# just pick the first one if it encodes to multiple tokens... 99.9% not required and maybe worse overall.
return dict([(encoder.decode([encoder.encode(token)[0]]), prob) for token, prob in logprobs.items()])
except KeyError:
# assume native tokens if we can't find the tokenizer
return logprobs
def marshal_common_params(body):
# Request Parameters
# Try to use openai defaults or map them to something with the same intent
req_params = get_default_req_params()
# Common request parameters
req_params['truncation_length'] = shared.settings['truncation_length']
req_params['add_bos_token'] = shared.settings.get('add_bos_token', req_params['add_bos_token'])
req_params['seed'] = shared.settings.get('seed', req_params['seed'])
req_params['custom_stopping_strings'] = shared.settings['custom_stopping_strings']
# OpenAI API Parameters
# model - ignored for now, TODO: When we can reliably load a model or lora from a name only change this
req_params['requested_model'] = body.get('model', shared.model_name)
req_params['suffix'] = default(body, 'suffix', req_params['suffix'])
req_params['temperature'] = clamp(default(body, 'temperature', req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0/2.0
req_params['top_p'] = clamp(default(body, 'top_p', req_params['top_p']), 0.001, 1.0)
n = default(body, 'n', 1)
if n != 1:
raise InvalidRequestError(message="Only n = 1 is supported.", param='n')
if 'stop' in body: # str or array, max len 4 (ignored)
if isinstance(body['stop'], str):
req_params['stopping_strings'] = [body['stop']] # non-standard parameter
elif isinstance(body['stop'], list):
req_params['stopping_strings'] = body['stop']
# presence_penalty - ignored
# frequency_penalty - ignored
# user - ignored
logits_processor = []
logit_bias = body.get('logit_bias', None)
if logit_bias: # {str: float, ...}
# XXX convert tokens from tiktoken based on requested model
# Ex.: 'logit_bias': {'1129': 100, '11442': 100, '16243': 100}
try:
encoder = tiktoken.encoding_for_model(req_params['requested_model'])
new_logit_bias = {}
for logit, bias in logit_bias.items():
for x in encode(encoder.decode([int(logit)]))[0]:
new_logit_bias[str(int(x))] = bias
print(logit_bias, '->', new_logit_bias)
logit_bias = new_logit_bias
except KeyError:
pass # assume native tokens if we can't find the tokenizer
logits_processor = [LogitsBiasProcessor(logit_bias)]
logprobs = None # coming to chat eventually
if 'logprobs' in body:
logprobs = default(body, 'logprobs', 0) # maybe cap at topk? don't clamp 0-5.
req_params['logprob_proc'] = LogprobProcessor(logprobs)
logits_processor.extend([req_params['logprob_proc']])
else:
logprobs = None
if logits_processor: # requires logits_processor support
req_params['logits_processor'] = LogitsProcessorList(logits_processor)
return req_params
def messages_to_prompt(body: dict, req_params: dict, max_tokens):
# functions
if body.get('functions', []): # chat only
raise InvalidRequestError(message="functions is not supported.", param='functions')
if body.get('function_call', ''): # chat only, 'none', 'auto', {'name': 'func'}
raise InvalidRequestError(message="function_call is not supported.", param='function_call')
if not 'messages' in body:
raise InvalidRequestError(message="messages is required", param='messages')
messages = body['messages']
role_formats = {
'user': 'user: {message}\n',
'assistant': 'assistant: {message}\n',
'system': '{message}',
'context': 'You are a helpful assistant. Answer as concisely as possible.',
'prompt': 'assistant:',
}
if not 'stopping_strings' in req_params:
req_params['stopping_strings'] = []
# Instruct models can be much better
if shared.settings['instruction_template']:
try:
instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r'))
template = instruct['turn_template']
system_message_template = "{message}"
system_message_default = instruct['context']
bot_start = template.find('<|bot|>') # So far, 100% of instruction templates have this token
user_message_template = template[:bot_start].replace('<|user-message|>', '{message}').replace('<|user|>', instruct['user'])
bot_message_template = template[bot_start:].replace('<|bot-message|>', '{message}').replace('<|bot|>', instruct['bot'])
bot_prompt = bot_message_template[:bot_message_template.find('{message}')].rstrip(' ')
role_formats = {
'user': user_message_template,
'assistant': bot_message_template,
'system': system_message_template,
'context': system_message_default,
'prompt': bot_prompt,
}
if 'Alpaca' in shared.settings['instruction_template']:
req_params['stopping_strings'].extend(['\n###'])
elif instruct['user']: # WizardLM and some others have no user prompt.
req_params['stopping_strings'].extend(['\n' + instruct['user'], instruct['user']])
debug_msg(f"Loaded instruction role format: {shared.settings['instruction_template']}")
except Exception as e:
req_params['stopping_strings'].extend(['\nuser:'])
print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}")
print("Warning: Loaded default instruction-following template for model.")
else:
req_params['stopping_strings'].extend(['\nuser:'])
print("Warning: Loaded default instruction-following template for model.")
system_msgs = []
chat_msgs = []
# You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date}
context_msg = role_formats['system'].format(message=role_formats['context']) if role_formats['context'] else ''
context_msg = end_line(context_msg)
# Maybe they sent both? This is not documented in the API, but some clients seem to do this.
if 'prompt' in body:
context_msg = end_line(role_formats['system'].format(message=body['prompt'])) + context_msg
for m in messages:
role = m['role']
content = m['content']
# name = m.get('name', None)
# function_call = m.get('function_call', None) # user name or function name with output in content
msg = role_formats[role].format(message=content)
if role == 'system':
system_msgs.extend([msg])
elif role == 'function':
raise InvalidRequestError(message="role: function is not supported.", param='messages')
else:
chat_msgs.extend([msg])
system_msg = '\n'.join(system_msgs)
system_msg = end_line(system_msg)
prompt = system_msg + context_msg + ''.join(chat_msgs) + role_formats['prompt']
token_count = len(encode(prompt)[0])
if token_count >= req_params['truncation_length']:
err_msg = f"This model maximum context length is {req_params['truncation_length']} tokens. However, your messages resulted in over {token_count} tokens."
raise InvalidRequestError(message=err_msg)
if max_tokens > 0 and token_count + max_tokens > req_params['truncation_length']:
err_msg = f"This model maximum context length is {req_params['truncation_length']} tokens. However, your messages resulted in over {token_count} tokens and max_tokens is {max_tokens}."
print(f"Warning: ${err_msg}")
# raise InvalidRequestError(message=err_msg)
return prompt, token_count
def chat_completions(body: dict, is_legacy: bool = False) -> dict:
# Chat Completions
object_type = 'chat.completions'
created_time = int(time.time())
cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000))
resp_list = 'data' if is_legacy else 'choices'
# common params
req_params = marshal_common_params(body)
req_params['stream'] = False
requested_model = req_params.pop('requested_model')
logprob_proc = req_params.pop('logprob_proc', None)
req_params['top_k'] = 20 # There is no best_of/top_k param for chat, but it is much improved with a higher top_k.
# chat default max_tokens is 'inf', but also flexible
max_tokens = 0
max_tokens_str = 'length' if is_legacy else 'max_tokens'
if max_tokens_str in body:
max_tokens = default(body, max_tokens_str, req_params['truncation_length'])
req_params['max_new_tokens'] = max_tokens
else:
req_params['max_new_tokens'] = req_params['truncation_length']
# format the prompt from messages
prompt, token_count = messages_to_prompt(body, req_params, max_tokens)
# generate reply #######################################
debug_msg({'prompt': prompt, 'req_params': req_params})
stopping_strings = req_params.pop('stopping_strings', [])
logprob_proc = req_params.pop('logprob_proc', None)
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)
answer = ''
for a in generator:
answer = a
# strip extra leading space off new generated content
if answer and answer[0] == ' ':
answer = answer[1:]
completion_token_count = len(encode(answer)[0])
stop_reason = "stop"
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens:
stop_reason = "length"
resp = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name, # TODO: add Lora info?
resp_list: [{
"index": 0,
"finish_reason": stop_reason,
"message": {"role": "assistant", "content": answer}
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
if logprob_proc: # not official for chat yet
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
# else:
# resp[resp_list][0]["logprobs"] = None
return resp
# generator
def stream_chat_completions(body: dict, is_legacy: bool = False):
# Chat Completions
stream_object_type = 'chat.completions.chunk'
created_time = int(time.time())
cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000))
resp_list = 'data' if is_legacy else 'choices'
# common params
req_params = marshal_common_params(body)
req_params['stream'] = True
requested_model = req_params.pop('requested_model')
logprob_proc = req_params.pop('logprob_proc', None)
req_params['top_k'] = 20 # There is no best_of/top_k param for chat, but it is much improved with a higher top_k.
# chat default max_tokens is 'inf', but also flexible
max_tokens = 0
max_tokens_str = 'length' if is_legacy else 'max_tokens'
if max_tokens_str in body:
max_tokens = default(body, max_tokens_str, req_params['truncation_length'])
req_params['max_new_tokens'] = max_tokens
else:
req_params['max_new_tokens'] = req_params['truncation_length']
# format the prompt from messages
prompt, token_count = messages_to_prompt(body, req_params, max_tokens)
def chat_streaming_chunk(content):
# begin streaming
chunk = {
"id": cmpl_id,
"object": stream_object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
# So yeah... do both methods? delta and messages.
"message": {'role': 'assistant', 'content': content},
"delta": {'role': 'assistant', 'content': content},
}],
}
if logprob_proc: # not official for chat yet
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
# else:
# chunk[resp_list][0]["logprobs"] = None
return chunk
yield chat_streaming_chunk('')
# generate reply #######################################
debug_msg({'prompt': prompt, 'req_params': req_params})
stopping_strings = req_params.pop('stopping_strings', [])
logprob_proc = req_params.pop('logprob_proc', None)
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)
answer = ''
seen_content = ''
completion_token_count = 0
for a in generator:
answer = a
len_seen = len(seen_content)
new_content = answer[len_seen:]
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet.
continue
seen_content = answer
# strip extra leading space off new generated content
if len_seen == 0 and new_content[0] == ' ':
new_content = new_content[1:]
completion_token_count += len(encode(new_content)[0])
chunk = chat_streaming_chunk(new_content)
yield chunk
stop_reason = "stop"
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens:
stop_reason = "length"
chunk = chat_streaming_chunk('')
chunk[resp_list][0]['finish_reason'] = stop_reason
chunk['usage'] = {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
yield chunk
def completions(body: dict, is_legacy: bool = False):
# Legacy
# Text Completions
object_type = 'text_completion'
created_time = int(time.time())
cmpl_id = "conv-%d" % (int(time.time() * 1000000000))
resp_list = 'data' if is_legacy else 'choices'
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
prompt_str = 'context' if is_legacy else 'prompt'
if not prompt_str in body:
raise InvalidRequestError("Missing required input", param=prompt_str)
prompt = body[prompt_str]
if isinstance(prompt, list):
if prompt and isinstance(prompt[0], int):
try:
encoder = tiktoken.encoding_for_model(requested_model)
prompt = encode(encoder.decode(prompt))[0]
except KeyError:
prompt = decode(prompt)[0]
else:
raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str)
# common params
req_params = marshal_common_params(body)
req_params['stream'] = False
max_tokens_str = 'length' if is_legacy else 'max_tokens'
max_tokens = default(body, max_tokens_str, req_params['max_new_tokens'])
req_params['max_new_tokens'] = max_tokens
requested_model = req_params.pop('requested_model')
logprob_proc = req_params.pop('logprob_proc', None)
token_count = len(encode(prompt)[0])
if token_count + max_tokens > req_params['truncation_length']:
err_msg = f"The token count of your prompt ({token_count}) plus max_tokens ({max_tokens}) cannot exceed the model's context length ({req_params['truncation_length']})."
# print(f"Warning: ${err_msg}")
raise InvalidRequestError(message=err_msg, param=max_tokens_str)
req_params['echo'] = default(body, 'echo', req_params['echo'])
req_params['top_k'] = default(body, 'best_of', req_params['top_k'])
# generate reply #######################################
debug_msg({'prompt': prompt, 'req_params': req_params})
stopping_strings = req_params.pop('stopping_strings', [])
logprob_proc = req_params.pop('logprob_proc', None)
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)
answer = ''
for a in generator:
answer = a
# strip extra leading space off new generated content
if answer and answer[0] == ' ':
answer = answer[1:]
completion_token_count = len(encode(answer)[0])
stop_reason = "stop"
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens:
stop_reason = "length"
resp = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name, # TODO: add Lora info?
resp_list: [{
"index": 0,
"finish_reason": stop_reason,
"text": answer,
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
if logprob_proc:
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
else:
resp[resp_list][0]["logprobs"] = None
return resp
# generator
def stream_completions(body: dict, is_legacy: bool = False):
# Legacy
# Text Completions
# object_type = 'text_completion'
stream_object_type = 'text_completion.chunk'
created_time = int(time.time())
cmpl_id = "conv-%d" % (int(time.time() * 1000000000))
resp_list = 'data' if is_legacy else 'choices'
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
prompt_str = 'context' if is_legacy else 'prompt'
if not prompt_str in body:
raise InvalidRequestError("Missing required input", param=prompt_str)
prompt = body[prompt_str]
if isinstance(prompt, list):
if prompt and isinstance(prompt[0], int):
try:
encoder = tiktoken.encoding_for_model(requested_model)
prompt = encode(encoder.decode(prompt))[0]
except KeyError:
prompt = decode(prompt)[0]
else:
raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str)
# common params
req_params = marshal_common_params(body)
req_params['stream'] = True
max_tokens_str = 'length' if is_legacy else 'max_tokens'
max_tokens = default(body, max_tokens_str, req_params['max_new_tokens'])
req_params['max_new_tokens'] = max_tokens
requested_model = req_params.pop('requested_model')
logprob_proc = req_params.pop('logprob_proc', None)
token_count = len(encode(prompt)[0])
if token_count + max_tokens > req_params['truncation_length']:
err_msg = f"The token count of your prompt ({token_count}) plus max_tokens ({max_tokens}) cannot exceed the model's context length ({req_params['truncation_length']})."
# print(f"Warning: ${err_msg}")
raise InvalidRequestError(message=err_msg, param=max_tokens_str)
req_params['echo'] = default(body, 'echo', req_params['echo'])
req_params['top_k'] = default(body, 'best_of', req_params['top_k'])
def text_streaming_chunk(content):
# begin streaming
chunk = {
"id": cmpl_id,
"object": stream_object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
"text": content,
}],
}
if logprob_proc:
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
else:
chunk[resp_list][0]["logprobs"] = None
return chunk
yield text_streaming_chunk('')
# generate reply #######################################
debug_msg({'prompt': prompt, 'req_params': req_params})
stopping_strings = req_params.pop('stopping_strings', [])
logprob_proc = req_params.pop('logprob_proc', None)
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)
answer = ''
seen_content = ''
completion_token_count = 0
for a in generator:
answer = a
len_seen = len(seen_content)
new_content = answer[len_seen:]
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet.
continue
seen_content = answer
# strip extra leading space off new generated content
if len_seen == 0 and new_content[0] == ' ':
new_content = new_content[1:]
chunk = text_streaming_chunk(new_content)
completion_token_count += len(encode(new_content)[0])
yield chunk
stop_reason = "stop"
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens:
stop_reason = "length"
chunk = text_streaming_chunk('')
chunk[resp_list][0]["finish_reason"] = stop_reason
chunk["usage"] = {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
yield chunk

View File

@ -0,0 +1,67 @@
import copy
# Slightly different defaults for OpenAI's API
# Data type is important, Ex. use 0.0 for a float 0
default_req_params = {
'max_new_tokens': 16, # 'Inf' for chat
'temperature': 1.0,
'top_p': 1.0,
'top_k': 1, # choose 20 for chat in absence of another default
'repetition_penalty': 1.18,
'repetition_penalty_range': 0,
'encoder_repetition_penalty': 1.0,
'suffix': None,
'stream': False,
'echo': False,
'seed': -1,
# 'n' : default(body, 'n', 1), # 'n' doesn't have a direct map
'truncation_length': 2048, # first use shared.settings value
'add_bos_token': True,
'do_sample': True,
'typical_p': 1.0,
'epsilon_cutoff': 0.0, # In units of 1e-4
'eta_cutoff': 0.0, # In units of 1e-4
'tfs': 1.0,
'top_a': 0.0,
'min_length': 0,
'no_repeat_ngram_size': 0,
'num_beams': 1,
'penalty_alpha': 0.0,
'length_penalty': 1.0,
'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5.0,
'mirostat_eta': 0.1,
'ban_eos_token': False,
'skip_special_tokens': True,
'custom_stopping_strings': '',
# 'logits_processor' - conditionally passed
# 'stopping_strings' - temporarily used
# 'logprobs' - temporarily used
# 'requested_model' - temporarily used
}
def get_default_req_params():
return copy.deepcopy(default_req_params)
# little helper to get defaults if arg is present but None and should be the same type as default.
def default(dic, key, default):
val = dic.get(key, default)
if type(val) != type(default):
# maybe it's just something like 1 instead of 1.0
try:
v = type(default)(val)
if type(val)(v) == val: # if it's the same value passed in, it's ok.
return v
except:
pass
val = default
return val
def clamp(value, minvalue, maxvalue):
return max(minvalue, min(value, maxvalue))

102
extensions/openai/edits.py Normal file
View File

@ -0,0 +1,102 @@
import time
import yaml
import os
from modules import shared
from extensions.openai.defaults import get_default_req_params
from extensions.openai.utils import debug_msg
from extensions.openai.errors import *
from modules.text_generation import encode, generate_reply
def edits(instruction: str, input: str, temperature=1.0, top_p=1.0) -> dict:
created_time = int(time.time() * 1000)
# Request parameters
req_params = get_default_req_params()
stopping_strings = []
# Alpaca is verbose so a good default prompt
default_template = (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
)
instruction_template = default_template
# Use the special instruction/input/response template for anything trained like Alpaca
if shared.settings['instruction_template']:
if 'Alpaca' in shared.settings['instruction_template']:
stopping_strings.extend(['\n###'])
else:
try:
instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r'))
template = instruct['turn_template']
template = template\
.replace('<|user|>', instruct.get('user', ''))\
.replace('<|bot|>', instruct.get('bot', ''))\
.replace('<|user-message|>', '{instruction}\n{input}')
instruction_template = instruct.get('context', '') + template[:template.find('<|bot-message|>')].rstrip(' ')
if instruct['user']:
stopping_strings.extend(['\n' + instruct['user'], instruct['user']])
except Exception as e:
instruction_template = default_template
print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}")
print("Warning: Loaded default instruction-following template (Alpaca) for model.")
else:
stopping_strings.extend(['\n###'])
print("Warning: Loaded default instruction-following template (Alpaca) for model.")
edit_task = instruction_template.format(instruction=instruction, input=input)
truncation_length = shared.settings['truncation_length']
token_count = len(encode(edit_task)[0])
max_tokens = truncation_length - token_count
if max_tokens < 1:
err_msg = f"This model maximum context length is {truncation_length} tokens. However, your messages resulted in over {truncation_length - max_tokens} tokens."
raise InvalidRequestError(err_msg, param='input')
req_params['max_new_tokens'] = max_tokens
req_params['truncation_length'] = truncation_length
req_params['temperature'] = temperature
req_params['top_p'] = top_p
req_params['seed'] = shared.settings.get('seed', req_params['seed'])
req_params['add_bos_token'] = shared.settings.get('add_bos_token', req_params['add_bos_token'])
req_params['custom_stopping_strings'] = shared.settings['custom_stopping_strings']
debug_msg({'edit_template': edit_task, 'req_params': req_params, 'token_count': token_count})
generator = generate_reply(edit_task, req_params, stopping_strings=stopping_strings, is_chat=False)
longest_stop_len = max([len(x) for x in stopping_strings] + [0])
answer = ''
for a in generator:
answer = a
# some reply's have an extra leading space to fit the instruction template, just clip it off from the reply.
if edit_task[-1] != '\n' and answer and answer[0] == ' ':
answer = answer[1:]
completion_token_count = len(encode(answer)[0])
resp = {
"object": "edit",
"created": created_time,
"choices": [{
"text": answer,
"index": 0,
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
return resp

View File

@ -0,0 +1,54 @@
import os
from sentence_transformers import SentenceTransformer
from extensions.openai.utils import float_list_to_base64, debug_msg
from extensions.openai.errors import *
st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2"
embeddings_model = None
def load_embedding_model(model):
try:
emb_model = SentenceTransformer(model)
print(f"\nLoaded embedding model: {model}, max sequence length: {emb_model.max_seq_length}")
except Exception as e:
print(f"\nError: Failed to load embedding model: {model}")
raise ServiceUnavailableError(f"Error: Failed to load embedding model: {model}", internal_message=repr(e))
return emb_model
def get_embeddings_model():
global embeddings_model, st_model
if st_model and not embeddings_model:
embeddings_model = load_embedding_model(st_model) # lazy load the model
return embeddings_model
def get_embeddings_model_name():
global st_model
return st_model
def embeddings(input: list, encoding_format: str):
embeddings = get_embeddings_model().encode(input).tolist()
if encoding_format == "base64":
data = [{"object": "embedding", "embedding": float_list_to_base64(emb), "index": n} for n, emb in enumerate(embeddings)]
else:
data = [{"object": "embedding", "embedding": emb, "index": n} for n, emb in enumerate(embeddings)]
response = {
"object": "list",
"data": data,
"model": st_model, # return the real model
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
debug_msg(f"Embeddings return size: {len(embeddings[0])}, number: {len(embeddings)}")
return response

View File

@ -0,0 +1,31 @@
class OpenAIError(Exception):
def __init__(self, message=None, code=500, internal_message=''):
self.message = message
self.code = code
self.internal_message = internal_message
def __repr__(self):
return "%s(message=%r, code=%d)" % (
self.__class__.__name__,
self.message,
self.code,
)
class InvalidRequestError(OpenAIError):
def __init__(self, message, param, code=400, error_type='InvalidRequestError', internal_message=''):
super(OpenAIError, self).__init__(message, code, error_type, internal_message)
self.param = param
def __repr__(self):
return "%s(message=%r, code=%d, param=%s)" % (
self.__class__.__name__,
self.message,
self.code,
self.param,
)
class ServiceUnavailableError(OpenAIError):
def __init__(self, message=None, code=500, error_type='ServiceUnavailableError', internal_message=''):
super(OpenAIError, self).__init__(message, code, error_type, internal_message)

View File

@ -0,0 +1,49 @@
import os
import time
import requests
from extensions.openai.errors import *
def generations(prompt: str, size: str, response_format: str, n: int):
# Stable Diffusion callout wrapper for txt2img
# Low effort implementation for compatibility. With only "prompt" being passed and assuming DALL-E
# the results will be limited and likely poor. SD has hundreds of models and dozens of settings.
# If you want high quality tailored results you should just use the Stable Diffusion API directly.
# it's too general an API to try and shape the result with specific tags like "masterpiece", etc,
# Will probably work best with the stock SD models.
# SD configuration is beyond the scope of this API.
# At this point I will not add the edits and variations endpoints (ie. img2img) because they
# require changing the form data handling to accept multipart form data, also to properly support
# url return types will require file management and a web serving files... Perhaps later!
width, height = [int(x) for x in size.split('x')] # ignore the restrictions on size
# to hack on better generation, edit default payload.
payload = {
'prompt': prompt, # ignore prompt limit of 1000 characters
'width': width,
'height': height,
'batch_size': n,
'restore_faces': True, # slightly less horrible
}
resp = {
'created': int(time.time()),
'data': []
}
# TODO: support SD_WEBUI_AUTH username:password pair.
sd_url = f"{os.environ['SD_WEBUI_URL']}/sdapi/v1/txt2img"
response = requests.post(url=sd_url, json=payload)
r = response.json()
if response.status_code != 200 or 'images' not in r:
raise ServiceUnavailableError(r.get('detail', [{'msg': 'Unknown error calling Stable Diffusion'}])[0]['msg'], code=response.status_code)
# r['parameters']...
for b64_json in r['images']:
if response_format == 'b64_json':
resp['data'].extend([{'b64_json': b64_json}])
else:
resp['data'].extend([{'url': f'data:image/png;base64,{b64_json}'}]) # yeah it's lazy. requests.get() will not work with this
return resp

View File

@ -0,0 +1,79 @@
from modules import shared
from modules.utils import get_available_models
from modules.models import load_model, unload_model
from modules.models_settings import (get_model_settings_from_yamls,
update_model_parameters)
from extensions.openai.embeddings import get_embeddings_model_name
from extensions.openai.errors import *
def get_current_model_list() -> list:
return [shared.model_name] # The real chat/completions model, maybe "None"
def get_pseudo_model_list() -> list:
return [ # these are expected by so much, so include some here as a dummy
'gpt-3.5-turbo',
'text-embedding-ada-002',
]
def load_model(model_name: str) -> dict:
resp = {
"id": model_name,
"object": "engine",
"owner": "self",
"ready": True,
}
if model_name not in get_pseudo_model_list() + [get_embeddings_model_name()] + get_current_model_list(): # Real model only
# No args. Maybe it works anyways!
# TODO: hack some heuristics into args for better results
shared.model_name = model_name
unload_model()
model_settings = get_model_settings_from_yamls(shared.model_name)
shared.settings.update(model_settings)
update_model_parameters(model_settings, initial=True)
if shared.settings['mode'] != 'instruct':
shared.settings['instruction_template'] = None
shared.model, shared.tokenizer = load_model(shared.model_name)
if not shared.model: # load failed.
shared.model_name = "None"
raise OpenAIError(f"Model load failed for: {shared.model_name}")
return resp
def list_models(is_legacy: bool = False) -> dict:
# TODO: Lora's?
all_model_list = get_current_model_list() + [get_embeddings_model_name()] + get_pseudo_model_list() + get_available_models()
models = {}
if is_legacy:
models = [{"id": id, "object": "engine", "owner": "user", "ready": True} for id in all_model_list]
if not shared.model:
models[0]['ready'] = False
else:
models = [{"id": id, "object": "model", "owned_by": "user", "permission": []} for id in all_model_list]
resp = {
"object": "list",
"data": models,
}
return resp
def model_info(model_name: str) -> dict:
return {
"id": model_name,
"object": "model",
"owned_by": "user",
"permission": []
}

View File

@ -0,0 +1,69 @@
import time
import numpy as np
from numpy.linalg import norm
from extensions.openai.embeddings import get_embeddings_model
moderations_disabled = False # return 0/false
category_embeddings = None
antonym_embeddings = None
categories = ["sexual", "hate", "harassment", "self-harm", "sexual/minors", "hate/threatening", "violence/graphic", "self-harm/intent", "self-harm/instructions", "harassment/threatening", "violence"]
flag_threshold = 0.5
def get_category_embeddings():
global category_embeddings, categories
if category_embeddings is None:
embeddings = get_embeddings_model().encode(categories).tolist()
category_embeddings = dict(zip(categories, embeddings))
return category_embeddings
def cosine_similarity(a, b):
return np.dot(a, b) / (norm(a) * norm(b))
# seems most openai like with all-mpnet-base-v2
def mod_score(a, b):
return 2.0 * np.dot(a, b)
def moderations(input):
global category_embeddings, categories, flag_threshold, moderations_disabled
results = {
"id": f"modr-{int(time.time()*1e9)}",
"model": "text-moderation-001",
"results": [],
}
embeddings_model = get_embeddings_model()
if not embeddings_model or moderations_disabled:
results['results'] = [{
'categories': dict([(C, False) for C in categories]),
'category_scores': dict([(C, 0.0) for C in categories]),
'flagged': False,
}]
return results
category_embeddings = get_category_embeddings()
# input, string or array
if isinstance(input, str):
input = [input]
for in_str in input:
for ine in embeddings_model.encode([in_str]).tolist():
category_scores = dict([(C, mod_score(category_embeddings[C], ine)) for C in categories])
category_flags = dict([(C, bool(category_scores[C] > flag_threshold)) for C in categories])
flagged = any(category_flags.values())
results['results'].extend([{
'flagged': flagged,
'categories': category_flags,
'category_scores': category_scores,
}])
print(results)
return results

View File

@ -1,2 +1,3 @@
flask_cloudflared==0.0.12 flask_cloudflared==0.0.12
sentence-transformers sentence-transformers
tiktoken

View File

@ -1,107 +1,27 @@
import base64
import json import json
import os import os
import time import traceback
import requests
import yaml
import numpy as np
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
from threading import Thread from threading import Thread
from modules.utils import get_available_models
from modules.models import load_model, unload_model
from modules.models_settings import (get_model_settings_from_yamls,
update_model_parameters)
from modules import shared from modules import shared
from modules.text_generation import encode, generate_reply
from extensions.openai.tokens import token_count, token_encode, token_decode
import extensions.openai.models as OAImodels
import extensions.openai.edits as OAIedits
import extensions.openai.embeddings as OAIembeddings
import extensions.openai.images as OAIimages
import extensions.openai.moderations as OAImoderations
import extensions.openai.completions as OAIcompletions
from extensions.openai.errors import *
from extensions.openai.utils import debug_msg
from extensions.openai.defaults import (get_default_req_params, default, clamp)
params = { params = {
'port': int(os.environ.get('OPENEDAI_PORT')) if 'OPENEDAI_PORT' in os.environ else 5001, 'port': int(os.environ.get('OPENEDAI_PORT')) if 'OPENEDAI_PORT' in os.environ else 5001,
} }
debug = True if 'OPENEDAI_DEBUG' in os.environ else False
# Slightly different defaults for OpenAI's API
# Data type is important, Ex. use 0.0 for a float 0
default_req_params = {
'max_new_tokens': 200,
'temperature': 1.0,
'top_p': 1.0,
'top_k': 1,
'repetition_penalty': 1.18,
'repetition_penalty_range': 0,
'encoder_repetition_penalty': 1.0,
'suffix': None,
'stream': False,
'echo': False,
'seed': -1,
# 'n' : default(body, 'n', 1), # 'n' doesn't have a direct map
'truncation_length': 2048,
'add_bos_token': True,
'do_sample': True,
'typical_p': 1.0,
'epsilon_cutoff': 0.0, # In units of 1e-4
'eta_cutoff': 0.0, # In units of 1e-4
'tfs': 1.0,
'top_a': 0.0,
'min_length': 0,
'no_repeat_ngram_size': 0,
'num_beams': 1,
'penalty_alpha': 0.0,
'length_penalty': 1.0,
'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5.0,
'mirostat_eta': 0.1,
'ban_eos_token': False,
'skip_special_tokens': True,
'custom_stopping_strings': '',
}
# Optional, install the module and download the model to enable
# v1/embeddings
try:
from sentence_transformers import SentenceTransformer
except ImportError:
pass
st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2"
embedding_model = None
# little helper to get defaults if arg is present but None and should be the same type as default.
def default(dic, key, default):
val = dic.get(key, default)
if type(val) != type(default):
# maybe it's just something like 1 instead of 1.0
try:
v = type(default)(val)
if type(val)(v) == val: # if it's the same value passed in, it's ok.
return v
except:
pass
val = default
return val
def clamp(value, minvalue, maxvalue):
return max(minvalue, min(value, maxvalue))
def float_list_to_base64(float_list):
# Convert the list to a float32 array that the OpenAPI client expects
float_array = np.array(float_list, dtype="float32")
# Get raw bytes
bytes_array = float_array.tobytes()
# Encode bytes into base64
encoded_bytes = base64.b64encode(bytes_array)
# Turn raw base64 encoded bytes into ASCII
ascii_string = encoded_bytes.decode('ascii')
return ascii_string
class Handler(BaseHTTPRequestHandler): class Handler(BaseHTTPRequestHandler):
def send_access_control_headers(self): def send_access_control_headers(self):
@ -118,11 +38,43 @@ class Handler(BaseHTTPRequestHandler):
"Authorization" "Authorization"
) )
def openai_error(self, message, code = 500, error_type = 'APIError', param = '', internal_message = ''): def do_OPTIONS(self):
self.send_response(200)
self.send_access_control_headers()
self.send_header('Content-Type', 'application/json')
self.end_headers()
self.wfile.write("OK".encode('utf-8'))
def start_sse(self):
self.send_response(200)
self.send_access_control_headers()
self.send_header('Content-Type', 'text/event-stream')
self.send_header('Cache-Control', 'no-cache')
# self.send_header('Connection', 'keep-alive')
self.end_headers()
def send_sse(self, chunk: dict):
response = 'data: ' + json.dumps(chunk) + '\r\n\r\n'
debug_msg(response)
self.wfile.write(response.encode('utf-8'))
def end_sse(self):
self.wfile.write('data: [DONE]\r\n\r\n'.encode('utf-8'))
def return_json(self, ret: dict, code: int = 200, no_debug=False):
self.send_response(code) self.send_response(code)
self.send_access_control_headers() self.send_access_control_headers()
self.send_header('Content-Type', 'application/json') self.send_header('Content-Type', 'application/json')
self.end_headers() self.end_headers()
response = json.dumps(ret)
r_utf8 = response.encode('utf-8')
self.wfile.write(r_utf8)
if not no_debug:
debug_msg(r_utf8)
def openai_error(self, message, code=500, error_type='APIError', param='', internal_message=''):
error_resp = { error_resp = {
'error': { 'error': {
'message': message, 'message': message,
@ -132,121 +84,61 @@ class Handler(BaseHTTPRequestHandler):
} }
} }
if internal_message: if internal_message:
error_resp['internal_message'] = internal_message print(internal_message)
# error_resp['internal_message'] = internal_message
response = json.dumps(error_resp) self.return_json(error_resp, code)
self.wfile.write(response.encode('utf-8'))
def do_OPTIONS(self): def openai_error_handler(func):
self.send_response(200) def wrapper(self):
self.send_access_control_headers() try:
self.send_header('Content-Type', 'application/json') func(self)
self.end_headers() except ServiceUnavailableError as e:
self.wfile.write("OK".encode('utf-8')) self.openai_error(e.message, e.code, e.error_type, internal_message=e.internal_message)
except InvalidRequestError as e:
self.openai_error(e.message, e.code, e.error_type, e.param, internal_message=e.internal_message)
except OpenAIError as e:
self.openai_error(e.message, e.code, e.error_type, internal_message=e.internal_message)
except Exception as e:
self.openai_error(repr(e), 500, 'OpenAIError', internal_message=traceback.format_exc())
return wrapper
@openai_error_handler
def do_GET(self): def do_GET(self):
if self.path.startswith('/v1/engines') or self.path.startswith('/v1/models'): debug_msg(self.requestline)
current_model_list = [ shared.model_name ] # The real chat/completions model, maybe "None" debug_msg(self.headers)
embeddings_model_list = [ st_model ] if embedding_model else [] # The real sentence transformer embeddings model
pseudo_model_list = [ # these are expected by so much, so include some here as a dummy
'gpt-3.5-turbo', # /v1/chat/completions
'text-curie-001', # /v1/completions, 2k context
'text-davinci-002' # /v1/embeddings text-embedding-ada-002:1536, text-davinci-002:768
]
if self.path.startswith('/v1/engines') or self.path.startswith('/v1/models'):
is_legacy = 'engines' in self.path is_legacy = 'engines' in self.path
is_list = self.path in ['/v1/engines', '/v1/models'] is_list = self.path in ['/v1/engines', '/v1/models']
if is_legacy and not is_list:
resp = ''
if is_legacy and not is_list: # load model
model_name = self.path[self.path.find('/v1/engines/') + len('/v1/engines/'):] model_name = self.path[self.path.find('/v1/engines/') + len('/v1/engines/'):]
resp = OAImodels.load_model(model_name)
resp = {
"id": model_name,
"object": "engine",
"owner": "self",
"ready": True,
}
if model_name not in pseudo_model_list + embeddings_model_list + current_model_list: # Real model only
# No args. Maybe it works anyways!
# TODO: hack some heuristics into args for better results
shared.model_name = model_name
unload_model()
model_settings = get_model_settings_from_yamls(shared.model_name)
shared.settings.update(model_settings)
update_model_parameters(model_settings, initial=True)
if shared.settings['mode'] != 'instruct':
shared.settings['instruction_template'] = None
shared.model, shared.tokenizer = load_model(shared.model_name)
if not shared.model: # load failed.
shared.model_name = "None"
resp['id'] = "None"
resp['ready'] = False
elif is_list: elif is_list:
# TODO: Lora's? resp = OAImodels.list_models(is_legacy)
available_model_list = get_available_models()
all_model_list = current_model_list + embeddings_model_list + pseudo_model_list + available_model_list
models = {}
if is_legacy:
models = [{ "id": id, "object": "engine", "owner": "user", "ready": True } for id in all_model_list ]
if not shared.model:
models[0]['ready'] = False
else:
models = [{ "id": id, "object": "model", "owned_by": "user", "permission": [] } for id in all_model_list ]
resp = {
"object": "list",
"data": models,
}
else: else:
the_model_name = self.path[len('/v1/models/'):] model_name = self.path[len('/v1/models/'):]
resp = { resp = OAImodels.model_info()
"id": the_model_name,
"object": "model",
"owned_by": "user",
"permission": []
}
self.send_response(200) self.return_json(resp)
self.send_access_control_headers()
self.send_header('Content-Type', 'application/json')
self.end_headers()
response = json.dumps(resp)
self.wfile.write(response.encode('utf-8'))
elif '/billing/usage' in self.path: elif '/billing/usage' in self.path:
# Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31 # Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31
self.send_response(200) self.return_json({"total_usage": 0}, no_debug=True)
self.send_access_control_headers()
self.send_header('Content-Type', 'application/json')
self.end_headers()
response = json.dumps({
"total_usage": 0,
})
self.wfile.write(response.encode('utf-8'))
else: else:
self.send_error(404) self.send_error(404)
@openai_error_handler
def do_POST(self): def do_POST(self):
if debug: debug_msg(self.requestline)
print(self.headers) # did you know... python-openai sends your linux kernel & python version? debug_msg(self.headers)
content_length = int(self.headers['Content-Length']) content_length = int(self.headers['Content-Length'])
body = json.loads(self.rfile.read(content_length).decode('utf-8')) body = json.loads(self.rfile.read(content_length).decode('utf-8'))
if debug: debug_msg(body)
print(body)
if '/completions' in self.path or '/generate' in self.path: if '/completions' in self.path or '/generate' in self.path:
@ -255,621 +147,109 @@ class Handler(BaseHTTPRequestHandler):
return return
is_legacy = '/generate' in self.path is_legacy = '/generate' in self.path
is_chat_request = 'chat' in self.path is_streaming = body.get('stream', False)
resp_list = 'data' if is_legacy else 'choices'
# XXX model is ignored for now
# model = body.get('model', shared.model_name) # ignored, use existing for now
model = shared.model_name
created_time = int(time.time())
cmpl_id = "chatcmpl-%d" % (created_time) if is_chat_request else "conv-%d" % (created_time)
# Request Parameters
# Try to use openai defaults or map them to something with the same intent
req_params = default_req_params.copy()
stopping_strings = []
if 'stop' in body:
if isinstance(body['stop'], str):
stopping_strings.extend([body['stop']])
elif isinstance(body['stop'], list):
stopping_strings.extend(body['stop'])
truncation_length = default(shared.settings, 'truncation_length', 2048)
truncation_length = clamp(default(body, 'truncation_length', truncation_length), 1, truncation_length)
default_max_tokens = truncation_length if is_chat_request else 16 # completions default, chat default is 'inf' so we need to cap it.
max_tokens_str = 'length' if is_legacy else 'max_tokens'
max_tokens = default(body, max_tokens_str, default(shared.settings, 'max_new_tokens', default_max_tokens))
# if the user assumes OpenAI, the max_tokens is way too large - try to ignore it unless it's small enough
req_params['max_new_tokens'] = max_tokens
req_params['truncation_length'] = truncation_length
req_params['temperature'] = clamp(default(body, 'temperature', default_req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0
req_params['top_p'] = clamp(default(body, 'top_p', default_req_params['top_p']), 0.001, 1.0)
req_params['top_k'] = default(body, 'best_of', default_req_params['top_k'])
req_params['suffix'] = default(body, 'suffix', default_req_params['suffix'])
req_params['stream'] = default(body, 'stream', default_req_params['stream'])
req_params['echo'] = default(body, 'echo', default_req_params['echo'])
req_params['seed'] = shared.settings.get('seed', default_req_params['seed'])
req_params['add_bos_token'] = shared.settings.get('add_bos_token', default_req_params['add_bos_token'])
is_streaming = req_params['stream']
self.send_response(200)
self.send_access_control_headers()
if is_streaming:
self.send_header('Content-Type', 'text/event-stream')
self.send_header('Cache-Control', 'no-cache')
# self.send_header('Connection', 'keep-alive')
else:
self.send_header('Content-Type', 'application/json')
self.end_headers()
token_count = 0
completion_token_count = 0
prompt = ''
stream_object_type = ''
object_type = ''
if is_chat_request:
# Chat Completions
stream_object_type = 'chat.completions.chunk'
object_type = 'chat.completions'
messages = body['messages']
role_formats = {
'user': 'user: {message}\n',
'assistant': 'assistant: {message}\n',
'system': '{message}',
'context': 'You are a helpful assistant. Answer as concisely as possible.',
'prompt': 'assistant:',
}
# Instruct models can be much better
if shared.settings['instruction_template']:
try:
instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r'))
template = instruct['turn_template']
system_message_template = "{message}"
system_message_default = instruct['context']
bot_start = template.find('<|bot|>') # So far, 100% of instruction templates have this token
user_message_template = template[:bot_start].replace('<|user-message|>', '{message}').replace('<|user|>', instruct['user'])
bot_message_template = template[bot_start:].replace('<|bot-message|>', '{message}').replace('<|bot|>', instruct['bot'])
bot_prompt = bot_message_template[:bot_message_template.find('{message}')].rstrip(' ')
role_formats = {
'user': user_message_template,
'assistant': bot_message_template,
'system': system_message_template,
'context': system_message_default,
'prompt': bot_prompt,
}
if 'Alpaca' in shared.settings['instruction_template']:
stopping_strings.extend(['\n###'])
elif instruct['user']: # WizardLM and some others have no user prompt.
stopping_strings.extend(['\n' + instruct['user'], instruct['user']])
if debug:
print(f"Loaded instruction role format: {shared.settings['instruction_template']}")
except Exception as e:
stopping_strings.extend(['\nuser:'])
print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}")
print("Warning: Loaded default instruction-following template for model.")
else:
stopping_strings.extend(['\nuser:'])
print("Warning: Loaded default instruction-following template for model.")
system_msgs = []
chat_msgs = []
# You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date}
context_msg = role_formats['system'].format(message=role_formats['context']) if role_formats['context'] else ''
if context_msg:
system_msgs.extend([context_msg])
# Maybe they sent both? This is not documented in the API, but some clients seem to do this.
if 'prompt' in body:
prompt_msg = role_formats['system'].format(message=body['prompt'])
system_msgs.extend([prompt_msg])
for m in messages:
role = m['role']
content = m['content']
msg = role_formats[role].format(message=content)
if role == 'system':
system_msgs.extend([msg])
else:
chat_msgs.extend([msg])
# can't really truncate the system messages
system_msg = '\n'.join(system_msgs)
if system_msg and system_msg[-1] != '\n':
system_msg = system_msg + '\n'
system_token_count = len(encode(system_msg)[0])
remaining_tokens = truncation_length - system_token_count
chat_msg = ''
while chat_msgs:
new_msg = chat_msgs.pop()
new_size = len(encode(new_msg)[0])
if new_size <= remaining_tokens:
chat_msg = new_msg + chat_msg
remaining_tokens -= new_size
else:
print(f"Warning: too many messages for context size, dropping {len(chat_msgs) + 1} oldest message(s).")
break
prompt = system_msg + chat_msg + role_formats['prompt']
token_count = len(encode(prompt)[0])
else:
# Text Completions
stream_object_type = 'text_completion.chunk'
object_type = 'text_completion'
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
if is_legacy:
prompt = body['context'] # Older engines.generate API
else:
prompt = body['prompt'] # XXX this can be different types
if isinstance(prompt, list):
self.openai_error("API Batched generation not yet supported.")
return
token_count = len(encode(prompt)[0])
if token_count >= truncation_length:
new_len = int(len(prompt) * shared.settings['truncation_length'] / token_count)
prompt = prompt[-new_len:]
new_token_count = len(encode(prompt)[0])
print(f"Warning: truncating prompt to {new_len} characters, was {token_count} tokens. Now: {new_token_count} tokens.")
token_count = new_token_count
if truncation_length - token_count < req_params['max_new_tokens']:
print(f"Warning: Ignoring max_new_tokens ({req_params['max_new_tokens']}), too large for the remaining context. Remaining tokens: {truncation_length - token_count}")
req_params['max_new_tokens'] = truncation_length - token_count
print(f"Warning: Set max_new_tokens = {req_params['max_new_tokens']}")
if is_streaming: if is_streaming:
# begin streaming self.start_sse()
chunk = {
"id": cmpl_id,
"object": stream_object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
}],
}
if stream_object_type == 'text_completion.chunk': response = []
chunk[resp_list][0]["text"] = "" if 'chat' in self.path:
response = OAIcompletions.stream_chat_completions(body, is_legacy=is_legacy)
else: else:
# So yeah... do both methods? delta and messages. response = OAIcompletions.stream_completions(body, is_legacy=is_legacy)
chunk[resp_list][0]["message"] = {'role': 'assistant', 'content': ''}
chunk[resp_list][0]["delta"] = {'role': 'assistant', 'content': ''}
response = 'data: ' + json.dumps(chunk) + '\r\n\r\n' for resp in response:
self.wfile.write(response.encode('utf-8')) self.send_sse(resp)
# generate reply ####################################### self.end_sse()
if debug:
print({'prompt': prompt, 'req_params': req_params})
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)
answer = ''
seen_content = ''
longest_stop_len = max([len(x) for x in stopping_strings] + [0])
for a in generator:
answer = a
stop_string_found = False
len_seen = len(seen_content)
search_start = max(len_seen - longest_stop_len, 0)
for string in stopping_strings:
idx = answer.find(string, search_start)
if idx != -1:
answer = answer[:idx] # clip it.
stop_string_found = True
if stop_string_found:
break
# If something like "\nYo" is generated just before "\nYou:"
# is completed, buffer and generate more, don't send it
buffer_and_continue = False
for string in stopping_strings:
for j in range(len(string) - 1, 0, -1):
if answer[-j:] == string[:j]:
buffer_and_continue = True
break
else:
continue
break
if buffer_and_continue:
continue
if is_streaming:
# Streaming
new_content = answer[len_seen:]
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet.
continue
seen_content = answer
chunk = {
"id": cmpl_id,
"object": stream_object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
}],
}
# strip extra leading space off new generated content
if len_seen == 0 and new_content[0] == ' ':
new_content = new_content[1:]
if stream_object_type == 'text_completion.chunk':
chunk[resp_list][0]['text'] = new_content
else:
# So yeah... do both methods? delta and messages.
chunk[resp_list][0]['message'] = {'content': new_content}
chunk[resp_list][0]['delta'] = {'content': new_content}
response = 'data: ' + json.dumps(chunk) + '\r\n\r\n'
self.wfile.write(response.encode('utf-8'))
completion_token_count += len(encode(new_content)[0])
if is_streaming:
chunk = {
"id": cmpl_id,
"object": stream_object_type,
"created": created_time,
"model": model, # TODO: add Lora info?
resp_list: [{
"index": 0,
"finish_reason": "stop",
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
if stream_object_type == 'text_completion.chunk':
chunk[resp_list][0]['text'] = ''
else:
# So yeah... do both methods? delta and messages.
chunk[resp_list][0]['message'] = {'content': ''}
chunk[resp_list][0]['delta'] = {'content': ''}
response = 'data: ' + json.dumps(chunk) + '\r\n\r\ndata: [DONE]\r\n\r\n'
self.wfile.write(response.encode('utf-8'))
# Finished if streaming.
if debug:
if answer and answer[0] == ' ':
answer = answer[1:]
print({'answer': answer}, chunk)
return
# strip extra leading space off new generated content
if answer and answer[0] == ' ':
answer = answer[1:]
if debug:
print({'response': answer})
completion_token_count = len(encode(answer)[0])
stop_reason = "stop"
if token_count + completion_token_count >= truncation_length:
stop_reason = "length"
resp = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": model, # TODO: add Lora info?
resp_list: [{
"index": 0,
"finish_reason": stop_reason,
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
if is_chat_request:
resp[resp_list][0]["message"] = {"role": "assistant", "content": answer}
else: else:
resp[resp_list][0]["text"] = answer response = ''
if 'chat' in self.path:
response = OAIcompletions.chat_completions(body, is_legacy=is_legacy)
else:
response = OAIcompletions.completions(body, is_legacy=is_legacy)
response = json.dumps(resp) self.return_json(response)
self.wfile.write(response.encode('utf-8'))
elif '/edits' in self.path: elif '/edits' in self.path:
# deprecated
if not shared.model: if not shared.model:
self.openai_error("No model loaded.") self.openai_error("No model loaded.")
return return
self.send_response(200) req_params = get_default_req_params()
self.send_access_control_headers()
self.send_header('Content-Type', 'application/json')
self.end_headers()
created_time = int(time.time())
# Using Alpaca format, this may work with other models too.
instruction = body['instruction'] instruction = body['instruction']
input = body.get('input', '') input = body.get('input', '')
temperature = clamp(default(body, 'temperature', req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0
top_p = clamp(default(body, 'top_p', req_params['top_p']), 0.001, 1.0)
# Request parameters response = OAIedits.edits(instruction, input, temperature, top_p)
req_params = default_req_params.copy()
stopping_strings = []
# Alpaca is verbose so a good default prompt self.return_json(response)
default_template = (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
)
instruction_template = default_template
# Use the special instruction/input/response template for anything trained like Alpaca
if shared.settings['instruction_template']:
if 'Alpaca' in shared.settings['instruction_template']:
stopping_strings.extend(['\n###'])
else:
try:
instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r'))
template = instruct['turn_template']
template = template\
.replace('<|user|>', instruct.get('user', ''))\
.replace('<|bot|>', instruct.get('bot', ''))\
.replace('<|user-message|>', '{instruction}\n{input}')
instruction_template = instruct.get('context', '') + template[:template.find('<|bot-message|>')].rstrip(' ')
if instruct['user']:
stopping_strings.extend(['\n' + instruct['user'], instruct['user'] ])
except Exception as e:
instruction_template = default_template
print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}")
print("Warning: Loaded default instruction-following template (Alpaca) for model.")
else:
stopping_strings.extend(['\n###'])
print("Warning: Loaded default instruction-following template (Alpaca) for model.")
edit_task = instruction_template.format(instruction=instruction, input=input)
truncation_length = default(shared.settings, 'truncation_length', 2048)
token_count = len(encode(edit_task)[0])
max_tokens = truncation_length - token_count
req_params['max_new_tokens'] = max_tokens
req_params['truncation_length'] = truncation_length
req_params['temperature'] = clamp(default(body, 'temperature', default_req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0
req_params['top_p'] = clamp(default(body, 'top_p', default_req_params['top_p']), 0.001, 1.0)
req_params['seed'] = shared.settings.get('seed', default_req_params['seed'])
req_params['add_bos_token'] = shared.settings.get('add_bos_token', default_req_params['add_bos_token'])
if debug:
print({'edit_template': edit_task, 'req_params': req_params, 'token_count': token_count})
generator = generate_reply(edit_task, req_params, stopping_strings=stopping_strings, is_chat=False)
longest_stop_len = max([len(x) for x in stopping_strings] + [0])
answer = ''
seen_content = ''
for a in generator:
answer = a
stop_string_found = False
len_seen = len(seen_content)
search_start = max(len_seen - longest_stop_len, 0)
for string in stopping_strings:
idx = answer.find(string, search_start)
if idx != -1:
answer = answer[:idx] # clip it.
stop_string_found = True
if stop_string_found:
break
# some reply's have an extra leading space to fit the instruction template, just clip it off from the reply.
if edit_task[-1] != '\n' and answer and answer[0] == ' ':
answer = answer[1:]
completion_token_count = len(encode(answer)[0])
resp = {
"object": "edit",
"created": created_time,
"choices": [{
"text": answer,
"index": 0,
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
if debug:
print({'answer': answer, 'completion_token_count': completion_token_count})
response = json.dumps(resp)
self.wfile.write(response.encode('utf-8'))
elif '/images/generations' in self.path and 'SD_WEBUI_URL' in os.environ: elif '/images/generations' in self.path and 'SD_WEBUI_URL' in os.environ:
# Stable Diffusion callout wrapper for txt2img prompt = body['prompt']
# Low effort implementation for compatibility. With only "prompt" being passed and assuming DALL-E size = default(body, 'size', '1024x1024')
# the results will be limited and likely poor. SD has hundreds of models and dozens of settings.
# If you want high quality tailored results you should just use the Stable Diffusion API directly.
# it's too general an API to try and shape the result with specific tags like "masterpiece", etc,
# Will probably work best with the stock SD models.
# SD configuration is beyond the scope of this API.
# At this point I will not add the edits and variations endpoints (ie. img2img) because they
# require changing the form data handling to accept multipart form data, also to properly support
# url return types will require file management and a web serving files... Perhaps later!
self.send_response(200)
self.send_access_control_headers()
self.send_header('Content-Type', 'application/json')
self.end_headers()
width, height = [ int(x) for x in default(body, 'size', '1024x1024').split('x') ] # ignore the restrictions on size
response_format = default(body, 'response_format', 'url') # or b64_json response_format = default(body, 'response_format', 'url') # or b64_json
n = default(body, 'n', 1) # ignore the batch limits of max 10
payload = { response = OAIimages.generations(prompt=prompt, size=size, response_format=response_format, n=n)
'prompt': body['prompt'], # ignore prompt limit of 1000 characters
'width': width,
'height': height,
'batch_size': default(body, 'n', 1) # ignore the batch limits of max 10
}
resp = { self.return_json(response, no_debug=True)
'created': int(time.time()),
'data': []
}
# TODO: support SD_WEBUI_AUTH username:password pair. elif '/embeddings' in self.path:
sd_url = f"{os.environ['SD_WEBUI_URL']}/sdapi/v1/txt2img" encoding_format = body.get('encoding_format', '')
response = requests.post(url=sd_url, json=payload) input = body.get('input', body.get('text', ''))
r = response.json() if not input:
# r['parameters']... raise InvalidRequestError("Missing required argument input", params='input')
for b64_json in r['images']:
if response_format == 'b64_json':
resp['data'].extend([{'b64_json': b64_json}])
else:
resp['data'].extend([{'url': f'data:image/png;base64,{b64_json}'}]) # yeah it's lazy. requests.get() will not work with this
response = json.dumps(resp)
self.wfile.write(response.encode('utf-8'))
elif '/embeddings' in self.path and embedding_model is not None:
self.send_response(200)
self.send_access_control_headers()
self.send_header('Content-Type', 'application/json')
self.end_headers()
input = body['input'] if 'input' in body else body['text']
if type(input) is str: if type(input) is str:
input = [input] input = [input]
embeddings = embedding_model.encode(input).tolist() response = OAIembeddings.embeddings(input, encoding_format)
def enc_emb(emb): self.return_json(response, no_debug=True)
# If base64 is specified, encode. Otherwise, do nothing.
if body.get("encoding_format", "") == "base64":
return float_list_to_base64(emb)
else:
return emb
data = [{"object": "embedding", "embedding": enc_emb(emb), "index": n} for n, emb in enumerate(embeddings)]
response = json.dumps({
"object": "list",
"data": data,
"model": st_model, # return the real model
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
})
if debug:
print(f"Embeddings return size: {len(embeddings[0])}, number: {len(embeddings)}")
self.wfile.write(response.encode('utf-8'))
elif '/moderations' in self.path: elif '/moderations' in self.path:
# for now do nothing, just don't error. input = body['input']
self.send_response(200) if not input:
self.send_access_control_headers() raise InvalidRequestError("Missing required argument input", params='input')
self.send_header('Content-Type', 'application/json')
self.end_headers()
response = json.dumps({ response = OAImoderations.moderations(input)
"id": "modr-5MWoLO",
"model": "text-moderation-001", self.return_json(response, no_debug=True)
"results": [{
"categories": {
"hate": False,
"hate/threatening": False,
"self-harm": False,
"sexual": False,
"sexual/minors": False,
"violence": False,
"violence/graphic": False
},
"category_scores": {
"hate": 0.0,
"hate/threatening": 0.0,
"self-harm": 0.0,
"sexual": 0.0,
"sexual/minors": 0.0,
"violence": 0.0,
"violence/graphic": 0.0
},
"flagged": False
}]
})
self.wfile.write(response.encode('utf-8'))
elif self.path == '/api/v1/token-count': elif self.path == '/api/v1/token-count':
# NOT STANDARD. lifted from the api extension, but it's still very useful to calculate tokenized length client side. # NOT STANDARD. lifted from the api extension, but it's still very useful to calculate tokenized length client side.
self.send_response(200) response = token_count(body['prompt'])
self.send_access_control_headers()
self.send_header('Content-Type', 'application/json')
self.end_headers()
tokens = encode(body['prompt'])[0] self.return_json(response, no_debug=True)
response = json.dumps({
'results': [{ elif self.path == '/api/v1/token/encode':
'tokens': len(tokens) # NOT STANDARD. needed to support logit_bias, logprobs and token arrays for native models
}] encoding_format = body.get('encoding_format', '')
})
self.wfile.write(response.encode('utf-8')) response = token_encode(body['input'], encoding_format)
self.return_json(response, no_debug=True)
elif self.path == '/api/v1/token/decode':
# NOT STANDARD. needed to support logit_bias, logprobs and token arrays for native models
encoding_format = body.get('encoding_format', '')
response = token_decode(body['input'], encoding_format)
self.return_json(response, no_debug=True)
else: else:
print(self.path, self.headers)
self.send_error(404) self.send_error(404)
def run_server(): def run_server():
global embedding_model
try:
embedding_model = SentenceTransformer(st_model)
print(f"\nLoaded embedding model: {st_model}, max sequence length: {embedding_model.max_seq_length}")
except:
print(f"\nFailed to load embedding model: {st_model}")
pass
server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', params['port']) server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', params['port'])
server = ThreadingHTTPServer(server_addr, Handler) server = ThreadingHTTPServer(server_addr, Handler)
if shared.args.share: if shared.args.share:

View File

@ -0,0 +1,38 @@
from extensions.openai.utils import float_list_to_base64
from modules.text_generation import encode, decode
def token_count(prompt):
tokens = encode(prompt)[0]
return {
'results': [{
'tokens': len(tokens)
}]
}
def token_encode(input, encoding_format=''):
# if isinstance(input, list):
tokens = encode(input)[0]
return {
'results': [{
'encoding_format': encoding_format,
'tokens': float_list_to_base64(tokens) if encoding_format == "base64" else tokens,
'length': len(tokens),
}]
}
def token_decode(tokens, encoding_format):
# if isinstance(input, list):
# if encoding_format == "base64":
# tokens = base64_to_float_list(tokens)
output = decode(tokens)[0]
return {
'results': [{
'text': output
}]
}

View File

@ -0,0 +1,29 @@
import os
import base64
import numpy as np
def float_list_to_base64(float_list):
# Convert the list to a float32 array that the OpenAPI client expects
float_array = np.array(float_list, dtype="float32")
# Get raw bytes
bytes_array = float_array.tobytes()
# Encode bytes into base64
encoded_bytes = base64.b64encode(bytes_array)
# Turn raw base64 encoded bytes into ASCII
ascii_string = encoded_bytes.decode('ascii')
return ascii_string
def end_line(s):
if s and s[-1] != '\n':
s = s + '\n'
return s
def debug_msg(*args, **kwargs):
if 'OPENEDAI_DEBUG' in os.environ:
print(*args, **kwargs)

View File

@ -7,6 +7,7 @@ from transformers import BlipForConditionalGeneration, BlipProcessor
from modules import chat, shared from modules import chat, shared
from modules.ui import gather_interface_values from modules.ui import gather_interface_values
from modules.utils import gradio
# If 'state' is True, will hijack the next chat generation with # If 'state' is True, will hijack the next chat generation with
# custom input text given by 'value' in the format [text, visible_text] # custom input text given by 'value' in the format [text, visible_text]
@ -42,6 +43,6 @@ def ui():
# Prepare the input hijack, update the interface values, call the generation function, and clear the picture # Prepare the input hijack, update the interface values, call the generation function, and clear the picture
picture_select.upload( picture_select.upload(
lambda picture, name1, name2: input_hijack.update({"state": True, "value": generate_chat_picture(picture, name1, name2)}), [picture_select, shared.gradio['name1'], shared.gradio['name2']], None).then( lambda picture, name1, name2: input_hijack.update({"state": True, "value": generate_chat_picture(picture, name1, name2)}), [picture_select, shared.gradio['name1'], shared.gradio['name2']], None).then(
gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then( gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.generate_chat_reply_wrapper, shared.input_params, shared.gradio['display'], show_progress=False).then( chat.generate_chat_reply_wrapper, shared.input_params, gradio('display', 'history'), show_progress=False).then(
lambda: None, None, picture_select, show_progress=False) lambda: None, None, picture_select, show_progress=False)

View File

@ -2,3 +2,4 @@ beautifulsoup4==4.12.2
chromadb==0.3.18 chromadb==0.3.18
posthog==2.4.2 posthog==2.4.2
sentence_transformers==2.2.2 sentence_transformers==2.2.2
lxml

View File

@ -69,7 +69,7 @@ def feed_url_into_collector(urls, chunk_len, chunk_sep, strong_cleanup, threads)
cumulative += 'Processing the HTML sources...' cumulative += 'Processing the HTML sources...'
yield cumulative yield cumulative
for content in contents: for content in contents:
soup = BeautifulSoup(content, features="html.parser") soup = BeautifulSoup(content, features="lxml")
for script in soup(["script", "style"]): for script in soup(["script", "style"]):
script.extract() script.extract()
@ -113,7 +113,7 @@ def custom_generate_chat_prompt(user_input, state, **kwargs):
if len(history['internal']) > params['chunk_count'] and user_input != '': if len(history['internal']) > params['chunk_count'] and user_input != '':
chunks = [] chunks = []
hist_size = len(history['internal']) hist_size = len(history['internal'])
for i in range(hist_size-1): for i in range(hist_size - 1):
chunks.append(make_single_exchange(i)) chunks.append(make_single_exchange(i))
add_chunks_to_collector(chunks, chat_collector) add_chunks_to_collector(chunks, chat_collector)

View File

@ -16,7 +16,7 @@ params = {
} }
def do_stt(audio,whipser_model,whipser_language): def do_stt(audio, whipser_model, whipser_language):
transcription = "" transcription = ""
r = sr.Recognizer() r = sr.Recognizer()
@ -33,10 +33,10 @@ def do_stt(audio,whipser_model,whipser_language):
return transcription return transcription
def auto_transcribe(audio, auto_submit,whipser_model,whipser_language): def auto_transcribe(audio, auto_submit, whipser_model, whipser_language):
if audio is None: if audio is None:
return "", "" return "", ""
transcription = do_stt(audio,whipser_model,whipser_language) transcription = do_stt(audio, whipser_model, whipser_language)
if auto_submit: if auto_submit:
input_hijack.update({"state": True, "value": [transcription, transcription]}) input_hijack.update({"state": True, "value": [transcription, transcription]})
@ -50,11 +50,11 @@ def ui():
with gr.Row(): with gr.Row():
with gr.Accordion("Settings", open=False): with gr.Accordion("Settings", open=False):
auto_submit = gr.Checkbox(label='Submit the transcribed audio automatically', value=params['auto_submit']) auto_submit = gr.Checkbox(label='Submit the transcribed audio automatically', value=params['auto_submit'])
whipser_model = gr.Dropdown(label='Whisper Model', value=params['whipser_model'],choices=["tiny.en","base.en", "small.en","medium.en","tiny","base","small","medium","large"]) whipser_model = gr.Dropdown(label='Whisper Model', value=params['whipser_model'], choices=["tiny.en", "base.en", "small.en", "medium.en", "tiny", "base", "small", "medium", "large"])
whipser_language = gr.Dropdown(label='Whisper Language', value=params['whipser_language'],choices=["chinese","german","spanish","russian","korean","french","japanese","portuguese","turkish","polish","catalan","dutch","arabic","swedish","italian","indonesian","hindi","finnish","vietnamese","hebrew","ukrainian","greek","malay","czech","romanian","danish","hungarian","tamil","norwegian","thai","urdu","croatian","bulgarian","lithuanian","latin","maori","malayalam","welsh","slovak","telugu","persian","latvian","bengali","serbian","azerbaijani","slovenian","kannada","estonian","macedonian","breton","basque","icelandic","armenian","nepali","mongolian","bosnian","kazakh","albanian","swahili","galician","marathi","punjabi","sinhala","khmer","shona","yoruba","somali","afrikaans","occitan","georgian","belarusian","tajik","sindhi","gujarati","amharic","yiddish","lao","uzbek","faroese","haitian creole","pashto","turkmen","nynorsk","maltese","sanskrit","luxembourgish","myanmar","tibetan","tagalog","malagasy","assamese","tatar","hawaiian","lingala","hausa","bashkir","javanese","sundanese"]) whipser_language = gr.Dropdown(label='Whisper Language', value=params['whipser_language'], choices=["chinese", "german", "spanish", "russian", "korean", "french", "japanese", "portuguese", "turkish", "polish", "catalan", "dutch", "arabic", "swedish", "italian", "indonesian", "hindi", "finnish", "vietnamese", "hebrew", "ukrainian", "greek", "malay", "czech", "romanian", "danish", "hungarian", "tamil", "norwegian", "thai", "urdu", "croatian", "bulgarian", "lithuanian", "latin", "maori", "malayalam", "welsh", "slovak", "telugu", "persian", "latvian", "bengali", "serbian", "azerbaijani", "slovenian", "kannada", "estonian", "macedonian", "breton", "basque", "icelandic", "armenian", "nepali", "mongolian", "bosnian", "kazakh", "albanian", "swahili", "galician", "marathi", "punjabi", "sinhala", "khmer", "shona", "yoruba", "somali", "afrikaans", "occitan", "georgian", "belarusian", "tajik", "sindhi", "gujarati", "amharic", "yiddish", "lao", "uzbek", "faroese", "haitian creole", "pashto", "turkmen", "nynorsk", "maltese", "sanskrit", "luxembourgish", "myanmar", "tibetan", "tagalog", "malagasy", "assamese", "tatar", "hawaiian", "lingala", "hausa", "bashkir", "javanese", "sundanese"])
audio.change( audio.change(
auto_transcribe, [audio, auto_submit,whipser_model,whipser_language], [shared.gradio['textbox'], audio]).then( auto_transcribe, [audio, auto_submit, whipser_model, whipser_language], [shared.gradio['textbox'], audio]).then(
None, auto_submit, None, _js="(check) => {if (check) { document.getElementById('Generate').click() }}") None, auto_submit, None, _js="(check) => {if (check) { document.getElementById('Generate').click() }}")
whipser_model.change(lambda x: params.update({"whipser_model": x}), whipser_model, None) whipser_model.change(lambda x: params.update({"whipser_model": x}), whipser_model, None)
whipser_language.change(lambda x: params.update({"whipser_language": x}), whipser_language, None) whipser_language.change(lambda x: params.update({"whipser_language": x}), whipser_language, None)

View File

@ -97,6 +97,8 @@ llama-65b-gptq-3bit:
.*raven: .*raven:
mode: 'instruct' mode: 'instruct'
instruction_template: 'RWKV-Raven' instruction_template: 'RWKV-Raven'
.*ctx8192:
truncation_length: 8192
.*moss-moon.*sft: .*moss-moon.*sft:
mode: 'instruct' mode: 'instruct'
instruction_template: 'MOSS' instruction_template: 'MOSS'
@ -143,6 +145,7 @@ llama-65b-gptq-3bit:
.*wizard.*mega: .*wizard.*mega:
mode: 'instruct' mode: 'instruct'
instruction_template: 'Wizard-Mega' instruction_template: 'Wizard-Mega'
custom_stopping_strings: '"</s>"'
.*ziya-: .*ziya-:
mode: 'instruct' mode: 'instruct'
instruction_template: 'Ziya' instruction_template: 'Ziya'
@ -243,3 +246,26 @@ TheBloke_WizardLM-30B-GPTQ:
.*xgen.*-inst: .*xgen.*-inst:
truncation_length: 8192 truncation_length: 8192
instruction_template: 'Vicuna-v0' instruction_template: 'Vicuna-v0'
.*(platypus|gplatty|superplatty):
mode: 'instruct'
instruction_template: 'Alpaca'
.*longchat:
mode: 'instruct'
instruction_template: 'Vicuna-v1.1'
.*vicuna-33b:
mode: 'instruct'
instruction_template: 'Vicuna-v1.1'
.*redmond-hermes-coder:
mode: 'instruct'
instruction_template: 'Alpaca'
truncation_length: 8192
.*wizardcoder-15b:
mode: 'instruct'
instruction_template: 'Alpaca'
truncation_length: 8192
.*wizardlm-.*-v1.1:
mode: 'instruct'
instruction_template: 'Vicuna-v1.1'
.*godzilla:
mode: 'instruct'
instruction_template: 'Alpaca'

View File

@ -3,6 +3,7 @@ import copy
import functools import functools
import json import json
import re import re
from datetime import datetime
from pathlib import Path from pathlib import Path
import gradio as gr import gradio as gr
@ -388,8 +389,25 @@ def load_history(file, history):
return history return history
def save_history_at_user_request(history, character, mode):
def make_timestamp_path(character=None):
return f"logs/{character or ''}{'_' if character else ''}{datetime.now().strftime('%Y%m%d-%H%M%S')}.json"
path = None
if mode in ['chat', 'chat-instruct'] and character not in ['', 'None', None]:
path = make_timestamp_path(character)
else:
# Try to use mode as the file name, otherwise just use the timestamp
try:
path = make_timestamp_path(mode.capitalize())
except:
path = make_timestamp_path()
return save_history(history, path)
def save_persistent_history(history, character, mode): def save_persistent_history(history, character, mode):
if mode in ['chat', 'chat-instruct'] and character not in ['', 'None', None] and not shared.args.multi_user: if mode in ['chat', 'chat-instruct'] and character not in ['', 'None', None] and not shared.args.multi_user:
save_history(history, path=Path(f'logs/{character}_persistent.json')) save_history(history, path=Path(f'logs/{character}_persistent.json'))

View File

@ -49,6 +49,7 @@ class LlamaCppModel:
'n_batch': shared.args.n_batch, 'n_batch': shared.args.n_batch,
'use_mmap': not shared.args.no_mmap, 'use_mmap': not shared.args.no_mmap,
'use_mlock': shared.args.mlock, 'use_mlock': shared.args.mlock,
'low_vram': shared.args.low_vram,
'n_gpu_layers': shared.args.n_gpu_layers 'n_gpu_layers': shared.args.n_gpu_layers
} }

View File

@ -34,6 +34,7 @@ loaders_and_params = {
'n_batch', 'n_batch',
'threads', 'threads',
'no_mmap', 'no_mmap',
'low_vram',
'mlock', 'mlock',
'llama_cpp_seed', 'llama_cpp_seed',
], ],
@ -53,14 +54,14 @@ loaders_and_params = {
'trust_remote_code', 'trust_remote_code',
'transformers_info' 'transformers_info'
], ],
'ExLlama' : [ 'ExLlama': [
'gpu_split', 'gpu_split',
'max_seq_len', 'max_seq_len',
'compress_pos_emb', 'compress_pos_emb',
'alpha_value', 'alpha_value',
'exllama_info', 'exllama_info',
], ],
'ExLlama_HF' : [ 'ExLlama_HF': [
'gpu_split', 'gpu_split',
'max_seq_len', 'max_seq_len',
'compress_pos_emb', 'compress_pos_emb',

View File

@ -106,7 +106,7 @@ def load_tokenizer(model_name, model):
use_fast=False use_fast=False
) )
except ValueError: except ValueError:
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
path_to_model, path_to_model,
trust_remote_code=shared.args.trust_remote_code, trust_remote_code=shared.args.trust_remote_code,
use_fast=True use_fast=True
@ -339,6 +339,7 @@ def clear_torch_cache():
def unload_model(): def unload_model():
shared.model = shared.tokenizer = None shared.model = shared.tokenizer = None
shared.lora_names = [] shared.lora_names = []
shared.model_dirty_from_training = False
clear_torch_cache() clear_torch_cache()

View File

@ -99,7 +99,10 @@ def apply_model_settings_to_state(model, state):
for k in model_settings: for k in model_settings:
if k in state: if k in state:
state[k] = model_settings[k] if k in ['wbits', 'groupsize']:
state[k] = str(model_settings[k])
else:
state[k] = model_settings[k]
return state return state

View File

@ -126,6 +126,7 @@ class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor):
''' '''
Copied from the transformers library Copied from the transformers library
''' '''
def __init__(self, penalty: float, _range: int): def __init__(self, penalty: float, _range: int):
if not isinstance(penalty, float) or not (penalty > 0): if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")

View File

@ -12,6 +12,7 @@ tokenizer = None
is_seq2seq = False is_seq2seq = False
model_name = "None" model_name = "None"
lora_names = [] lora_names = []
model_dirty_from_training = False
# Chat variables # Chat variables
stop_everything = False stop_everything = False
@ -120,6 +121,7 @@ parser.add_argument('--use_double_quant', action='store_true', help='use_double_
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.') parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.') parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.') parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
parser.add_argument('--low-vram', action='store_true', help='Low VRAM Mode')
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.') parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
parser.add_argument('--cache-capacity', type=str, help='Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.') parser.add_argument('--cache-capacity', type=str, help='Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.') parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
@ -179,7 +181,7 @@ parser.add_argument("--gradio-auth-path", type=str, help='Set the gradio authent
# API # API
parser.add_argument('--api', action='store_true', help='Enable the API extension.') parser.add_argument('--api', action='store_true', help='Enable the API extension.')
parser.add_argument('--api-blocking-port', type=int, default=5000, help='The listening port for the blocking API.') parser.add_argument('--api-blocking-port', type=int, default=5000, help='The listening port for the blocking API.')
parser.add_argument('--api-streaming-port', type=int, default=5005, help='The listening port for the streaming API.') parser.add_argument('--api-streaming-port', type=int, default=5005, help='The listening port for the streaming API.')
parser.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.') parser.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.')
# Multimodal # Multimodal

View File

@ -1,18 +1,23 @@
import os
os.environ["WANDB_MODE"] = "offline"
# os.environ["WANDB_DISABLED"] = "true"
import json import json
import math import math
import random import random
import shutil
import sys import sys
import threading import threading
import time import time
import traceback import traceback
from datetime import datetime
from pathlib import Path from pathlib import Path
import gradio as gr import gradio as gr
import torch import torch
import transformers import transformers
from modules.models import load_model, unload_model
import shutil
from datetime import datetime
from datasets import Dataset, load_dataset from datasets import Dataset, load_dataset
from peft import ( from peft import (
@ -29,6 +34,7 @@ from modules.evaluate import (
save_past_evaluations save_past_evaluations
) )
from modules.logging_colors import logger from modules.logging_colors import logger
from modules.utils import natural_keys
# This mapping is from a very recent commit, not yet released. # This mapping is from a very recent commit, not yet released.
# If not available, default to a backup map for some common model types. # If not available, default to a backup map for some common model types.
@ -56,7 +62,7 @@ train_log = {}
train_template = {} train_template = {}
WANT_INTERRUPT = False WANT_INTERRUPT = False
PARAMETERS = ["lora_name", "always_override", "save_steps", "micro_batch_size", "batch_size", "epochs", "learning_rate", "lr_scheduler_type", "lora_rank", "lora_alpha", "lora_dropout", "cutoff_len", "dataset", "eval_dataset", "format", "eval_steps", "raw_text_file", "overlap_len", "newline_favor_len", "higher_rank_limit", "warmup_steps", "optimizer", "hard_cut_string", "train_only_after", "stop_at_loss"] PARAMETERS = ["lora_name", "always_override", "save_steps", "micro_batch_size", "batch_size", "epochs", "learning_rate", "lr_scheduler_type", "lora_rank", "lora_alpha", "lora_dropout", "cutoff_len", "dataset", "eval_dataset", "format", "eval_steps", "raw_text_file", "overlap_len", "newline_favor_len", "higher_rank_limit", "warmup_steps", "optimizer", "hard_cut_string", "train_only_after", "stop_at_loss", "add_eos_token", "min_chars", "report_to"]
def create_train_interface(): def create_train_interface():
@ -104,6 +110,7 @@ def create_train_interface():
raw_text_file = gr.Dropdown(choices=utils.get_datasets('training/datasets', 'txt'), value='None', label='Text file', info='The raw text file to use for training.') raw_text_file = gr.Dropdown(choices=utils.get_datasets('training/datasets', 'txt'), value='None', label='Text file', info='The raw text file to use for training.')
ui.create_refresh_button(raw_text_file, lambda: None, lambda: {'choices': utils.get_datasets('training/datasets', 'txt')}, 'refresh-button') ui.create_refresh_button(raw_text_file, lambda: None, lambda: {'choices': utils.get_datasets('training/datasets', 'txt')}, 'refresh-button')
hard_cut_string = gr.Textbox(label='Hard Cut String', value='\\n\\n\\n', info='String that indicates a hard cut between text parts. Helps prevent unwanted overlap.') hard_cut_string = gr.Textbox(label='Hard Cut String', value='\\n\\n\\n', info='String that indicates a hard cut between text parts. Helps prevent unwanted overlap.')
min_chars = gr.Number(label='Ignore small blocks', value=0, info='Ignore Hard Cut blocks that have less or equal characters than this number')
with gr.Row(): with gr.Row():
overlap_len = gr.Slider(label='Overlap Length', minimum=0, maximum=512, value=128, step=16, info='Overlap length - ie how many tokens from the prior chunk of text to include into the next chunk. (The chunks themselves will be of a size determined by Cutoff Length below). Setting overlap to exactly half the cutoff length may be ideal.') overlap_len = gr.Slider(label='Overlap Length', minimum=0, maximum=512, value=128, step=16, info='Overlap length - ie how many tokens from the prior chunk of text to include into the next chunk. (The chunks themselves will be of a size determined by Cutoff Length below). Setting overlap to exactly half the cutoff length may be ideal.')
@ -115,9 +122,12 @@ def create_train_interface():
optimizer = gr.Dropdown(label='Optimizer', value='adamw_torch', choices=['adamw_hf', 'adamw_torch', 'adamw_torch_fused', 'adamw_torch_xla', 'adamw_apex_fused', 'adafactor', 'adamw_bnb_8bit', 'adamw_anyprecision', 'sgd', 'adagrad'], info='Different optimizer implementation options, for advanced users. Effects of different options are not well documented yet.') optimizer = gr.Dropdown(label='Optimizer', value='adamw_torch', choices=['adamw_hf', 'adamw_torch', 'adamw_torch_fused', 'adamw_torch_xla', 'adamw_apex_fused', 'adafactor', 'adamw_bnb_8bit', 'adamw_anyprecision', 'sgd', 'adagrad'], info='Different optimizer implementation options, for advanced users. Effects of different options are not well documented yet.')
train_only_after = gr.Textbox(label='Train Only After', value='', info='Only consider text *after* this string in any given chunk for training. For Alpaca datasets, use "### Response:" to only train the response and ignore the input.') train_only_after = gr.Textbox(label='Train Only After', value='', info='Only consider text *after* this string in any given chunk for training. For Alpaca datasets, use "### Response:" to only train the response and ignore the input.')
stop_at_loss = gr.Slider(label='Stop at loss', minimum=0.0, maximum=3.0, step=0.1, value=0.00, info='The process will automatically stop once the desired loss value is reached. (reasonable numbers are 1.5-1.8)') stop_at_loss = gr.Slider(label='Stop at loss', minimum=0.0, maximum=3.0, step=0.1, value=0.00, info='The process will automatically stop once the desired loss value is reached. (reasonable numbers are 1.5-1.8)')
add_eos_token = gr.Checkbox(label='Add EOS token', value=False, info="Adds EOS token for each dataset item. In case of raw text, the EOS will be added at the Hard Cut")
with gr.Row(): with gr.Row():
higher_rank_limit = gr.Checkbox(label='Enable higher ranks', value=False, info='If checked, changes Rank/Alpha slider above to go much higher. This will not work without a datacenter-class GPU.') higher_rank_limit = gr.Checkbox(label='Enable higher ranks', value=False, info='If checked, changes Rank/Alpha slider above to go much higher. This will not work without a datacenter-class GPU.')
with gr.Row():
report_to = gr.Radio(label="Save detailed logs with", value="None", choices=["None", "wandb", "tensorboard"], interactive=True)
with gr.Row(): with gr.Row():
start_button = gr.Button("Start LoRA Training") start_button = gr.Button("Start LoRA Training")
@ -148,7 +158,9 @@ def create_train_interface():
refresh_table = gr.Button('Refresh the table', elem_classes="small-button") refresh_table = gr.Button('Refresh the table', elem_classes="small-button")
# Training events # Training events
all_params = [lora_name, always_override, save_steps, micro_batch_size, batch_size, epochs, learning_rate, lr_scheduler_type, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, eval_steps, raw_text_file, overlap_len, newline_favor_len, higher_rank_limit, warmup_steps, optimizer, hard_cut_string, train_only_after, stop_at_loss]
all_params = [lora_name, always_override, save_steps, micro_batch_size, batch_size, epochs, learning_rate, lr_scheduler_type, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, eval_steps, raw_text_file, overlap_len, newline_favor_len, higher_rank_limit, warmup_steps, optimizer, hard_cut_string, train_only_after, stop_at_loss, add_eos_token, min_chars, report_to]
copy_from.change(do_copy_params, [copy_from] + all_params, all_params) copy_from.change(do_copy_params, [copy_from] + all_params, all_params)
start_button.click(do_train, all_params, output) start_button.click(do_train, all_params, output)
stop_button.click(do_interrupt, None, None, queue=False) stop_button.click(do_interrupt, None, None, queue=False)
@ -240,6 +252,7 @@ def backup_adapter(input_folder):
except Exception as e: except Exception as e:
print("An error occurred in backup_adapter:", str(e)) print("An error occurred in backup_adapter:", str(e))
def calc_trainable_parameters(model): def calc_trainable_parameters(model):
trainable_params = 0 trainable_params = 0
all_param = 0 all_param = 0
@ -253,10 +266,10 @@ def calc_trainable_parameters(model):
if param.requires_grad: if param.requires_grad:
trainable_params += num_params trainable_params += num_params
return trainable_params,all_param return trainable_params, all_param
def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float): def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float, add_eos_token: bool, min_chars: int, report_to: str):
if shared.args.monkey_patch: if shared.args.monkey_patch:
from monkeypatch.peft_tuners_lora_monkey_patch import ( from monkeypatch.peft_tuners_lora_monkey_patch import (
@ -314,14 +327,22 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
def encode(text, add_bos_token): def encode(text, add_bos_token):
result = shared.tokenizer.encode(text, truncation=True, max_length=cutoff_len) result = shared.tokenizer.encode(text, truncation=True, max_length=cutoff_len)
# Check if the first two tokens are BOS
if len(result) >= 2 and result[:2] == [shared.tokenizer.bos_token_id, shared.tokenizer.bos_token_id]:
result = result[1:]
if not add_bos_token and result[0] == shared.tokenizer.bos_token_id: if not add_bos_token and result[0] == shared.tokenizer.bos_token_id:
result = result[1:] result = result[1:]
return result return result
def tokenize(prompt): def tokenize(prompt, append_eos_token=False):
if train_only_after == '' or train_only_after not in prompt: if train_only_after == '' or train_only_after not in prompt:
input_ids = encode(prompt, True) input_ids = encode(prompt, True)
if append_eos_token and input_ids[-1] != shared.tokenizer.eos_token_id and len(input_ids) < cutoff_len:
input_ids.append(shared.tokenizer.eos_token_id)
input_ids = [shared.tokenizer.pad_token_id] * (cutoff_len - len(input_ids)) + input_ids input_ids = [shared.tokenizer.pad_token_id] * (cutoff_len - len(input_ids)) + input_ids
labels = [1] * len(input_ids) labels = [1] * len(input_ids)
@ -330,6 +351,9 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
before_tokens = encode(prompt[:ind], True) before_tokens = encode(prompt[:ind], True)
after_tokens = encode(prompt[ind:], False) after_tokens = encode(prompt[ind:], False)
if append_eos_token and after_tokens[-1] != shared.tokenizer.eos_token_id:
after_tokens.append(shared.tokenizer.eos_token_id)
full_length = len(after_tokens) + len(before_tokens) full_length = len(after_tokens) + len(before_tokens)
if full_length > cutoff_len: if full_length > cutoff_len:
after_tokens = after_tokens[:cutoff_len - len(before_tokens)] after_tokens = after_tokens[:cutoff_len - len(before_tokens)]
@ -350,31 +374,46 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
# == Prep the dataset, format, etc == # == Prep the dataset, format, etc ==
if raw_text_file not in ['None', '']: if raw_text_file not in ['None', '']:
logger.info("Loading raw text file dataset...")
train_template["template_type"] = "raw_text" train_template["template_type"] = "raw_text"
logger.info("Loading raw text file dataset...")
fullpath = clean_path('training/datasets', f'{raw_text_file}')
fullpath = Path(fullpath)
if fullpath.is_dir():
logger.info('Training path directory {}'.format(raw_text_file))
raw_text = ""
file_paths = sorted(fullpath.glob('*.txt'), key=lambda path: natural_keys(path.name))
for file_path in file_paths:
if file_path.is_file():
with file_path.open('r', encoding='utf-8') as file:
raw_text += file.read().replace('\r', '')
with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r', encoding='utf-8') as file: logger.info(f"Loaded training file: {file_path.name}")
raw_text = file.read().replace('\r', '') else:
with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r', encoding='utf-8') as file:
raw_text = file.read().replace('\r', '')
cut_string = hard_cut_string.replace('\\n', '\n') cut_string = hard_cut_string.replace('\\n', '\n')
eos_added = 0
out_tokens = [] out_tokens = []
for text_part in raw_text.split(cut_string): for text_part in raw_text.split(cut_string):
if text_part.strip() == '':
if len(text_part.strip()) <= min_chars:
continue continue
tokens = shared.tokenizer.encode(text_part) tokens = shared.tokenizer.encode(text_part)
if add_eos_token:
tokens.append(shared.tokenizer.eos_token_id)
eos_added += 1
step = cutoff_len - overlap_len step = cutoff_len - overlap_len
if step <= 0: if step <= 0:
yield f"Error: overlap_len ({overlap_len}) cannot be greater than or equal to cutoff_len ({cutoff_len})" yield f"Error: overlap_len ({overlap_len}) cannot be greater than or equal to cutoff_len ({cutoff_len})"
return return
tokens = list(split_chunks(tokens, step)) out_tokens.extend(split_chunks(tokens, cutoff_len, step))
for i in range(1, len(tokens)):
tokens[i] = tokens[i - 1][-overlap_len:] + tokens[i]
out_tokens.extend(tokens) if eos_added > 0:
del tokens print(f"EOS added to {eos_added} text blocks")
del raw_text # Note: could be a gig for a large dataset, so delete redundant data as we go to be safe on RAM del raw_text # Note: could be a gig for a large dataset, so delete redundant data as we go to be safe on RAM
text_chunks = [shared.tokenizer.decode(x) for x in out_tokens] text_chunks = [shared.tokenizer.decode(x) for x in out_tokens]
@ -415,7 +454,7 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
def generate_and_tokenize_prompt(data_point): def generate_and_tokenize_prompt(data_point):
prompt = generate_prompt(data_point) prompt = generate_prompt(data_point)
return tokenize(prompt) return tokenize(prompt, add_eos_token)
logger.info("Loading JSON datasets...") logger.info("Loading JSON datasets...")
data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json')) data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
@ -427,11 +466,33 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json')) eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
eval_data = eval_data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30)) eval_data = eval_data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))
# == We MUST reload model if it went through any previous training, even failed one ==
if shared.model_dirty_from_training:
selected_model = shared.model_name
if selected_model:
print("\033[1;31;1m(Model has been modified by previous training, it needs to be reloaded...)\033[0;37;0m")
try:
yield f"Reloading {selected_model}..."
unload_model()
shared.model, shared.tokenizer = load_model(shared.model_name, None)
if shared.model is not None:
print("Model reloaded OK, continue with training.")
else:
return f"Failed to load {selected_model}."
except:
exc = traceback.format_exc()
logger.error('Failed to reload the model.')
print(exc)
return exc
# == Start prepping the model itself == # == Start prepping the model itself ==
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'): if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
logger.info("Getting model ready...") logger.info("Getting model ready...")
prepare_model_for_int8_training(shared.model) prepare_model_for_int8_training(shared.model)
# base model is now frozen and should not be reused for any other LoRA training than this one
shared.model_dirty_from_training = True
logger.info("Prepping for training...") logger.info("Prepping for training...")
config = LoraConfig( config = LoraConfig(
r=lora_rank, r=lora_rank,
@ -518,6 +579,7 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
train_dataset=train_data, train_dataset=train_data,
eval_dataset=eval_data, eval_dataset=eval_data,
args=transformers.TrainingArguments( args=transformers.TrainingArguments(
report_to=report_to if report_to != "None" else None,
per_device_train_batch_size=micro_batch_size, per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps, gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=math.ceil(warmup_steps / gradient_accumulation_steps), warmup_steps=math.ceil(warmup_steps / gradient_accumulation_steps),
@ -534,7 +596,7 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
load_best_model_at_end=eval_data is not None, load_best_model_at_end=eval_data is not None,
# TODO: Enable multi-device support # TODO: Enable multi-device support
ddp_find_unused_parameters=None, ddp_find_unused_parameters=None,
no_cuda=shared.args.cpu no_cuda=shared.args.cpu,
), ),
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False), data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
callbacks=list([Callbacks()]) callbacks=list([Callbacks()])
@ -560,14 +622,18 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
lora_trainable_param, lora_all_param = calc_trainable_parameters(lora_model) lora_trainable_param, lora_all_param = calc_trainable_parameters(lora_model)
if lora_all_param>0: projections_string = ", ".join([projection.replace("_proj", "") for projection in model_to_lora_modules[model_id]])
print(f"Trainable params: {lora_trainable_param:,d} ({100 * lora_trainable_param / lora_all_param:.4f} %), All params: {lora_all_param:,d} (Model: {model_all_params:,d})")
print(f"Training '{model_id}' model using ({projections_string}) projections")
if lora_all_param > 0:
print(f"Trainable params: {lora_trainable_param:,d} ({100 * lora_trainable_param / lora_all_param:.4f} %), All params: {lora_all_param:,d} (Model: {model_all_params:,d})")
train_log.update({"base_model_name": shared.model_name}) train_log.update({"base_model_name": shared.model_name})
train_log.update({"base_model_class": shared.model.__class__.__name__}) train_log.update({"base_model_class": shared.model.__class__.__name__})
train_log.update({"base_loaded_in_4bit": getattr(lora_model, "is_loaded_in_4bit", False)}) train_log.update({"base_loaded_in_4bit": getattr(lora_model, "is_loaded_in_4bit", False)})
train_log.update({"base_loaded_in_8bit": getattr(lora_model, "is_loaded_in_8bit", False)}) train_log.update({"base_loaded_in_8bit": getattr(lora_model, "is_loaded_in_8bit", False)})
train_log.update({"projections": projections_string})
if stop_at_loss > 0: if stop_at_loss > 0:
print(f"Monitoring loss \033[1;31;1m(Auto-Stop at: {stop_at_loss})\033[0;37;0m") print(f"Monitoring loss \033[1;31;1m(Auto-Stop at: {stop_at_loss})\033[0;37;0m")
@ -576,7 +642,26 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
yield "Interrupted before start." yield "Interrupted before start."
return return
def log_train_dataset(trainer):
decoded_entries = []
# Try to decode the entries and write the log file
try:
# Iterate over the first 10 elements in the dataset (or fewer if there are less than 10)
for i in range(min(10, len(trainer.train_dataset))):
decoded_text = shared.tokenizer.decode(trainer.train_dataset[i]['input_ids'])
decoded_entries.append({"value": decoded_text})
# Write the log file
Path('logs').mkdir(exist_ok=True)
with open(Path('logs/train_dataset_sample.json'), 'w') as json_file:
json.dump(decoded_entries, json_file, indent=4)
logger.info("Log file 'train_dataset_sample.json' created in the 'logs' directory.")
except Exception as e:
logger.error(f"Failed to create log file due to error: {e}")
def threaded_run(): def threaded_run():
log_train_dataset(trainer)
trainer.train() trainer.train()
# Note: save in the thread in case the gradio thread breaks (eg browser closed) # Note: save in the thread in case the gradio thread breaks (eg browser closed)
lora_model.save_pretrained(lora_file_path) lora_model.save_pretrained(lora_file_path)
@ -625,9 +710,9 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
yield f"Done! LoRA saved to `{lora_file_path}`" yield f"Done! LoRA saved to `{lora_file_path}`"
def split_chunks(arr, step): def split_chunks(arr, size, step):
for i in range(0, len(arr), step): for i in range(0, len(arr), step):
yield arr[i:i + step] yield arr[i:i + size]
def cut_chunk_for_newline(chunk: str, max_length: int): def cut_chunk_for_newline(chunk: str, max_length: int):

View File

@ -57,6 +57,7 @@ def list_model_elements():
'threads', 'threads',
'n_batch', 'n_batch',
'no_mmap', 'no_mmap',
'low_vram',
'mlock', 'mlock',
'n_gpu_layers', 'n_gpu_layers',
'n_ctx', 'n_ctx',
@ -159,7 +160,7 @@ def apply_interface_values(state, use_persistent=False):
return [state[k] if k in state else gr.update() for k in elements] return [state[k] if k in state else gr.update() for k in elements]
class ToolButton(gr.Button, gr.components.FormComponent): class ToolButton(gr.Button, gr.components.IOComponent):
"""Small button with single emoji as text, fits inside gradio forms""" """Small button with single emoji as text, fits inside gradio forms"""
def __init__(self, **kwargs): def __init__(self, **kwargs):

View File

@ -114,6 +114,10 @@ def get_available_loras():
def get_datasets(path: str, ext: str): def get_datasets(path: str, ext: str):
# include subdirectories for raw txt files to allow training from a subdirectory of txt files
if ext == "txt":
return ['None'] + sorted(set([k.stem for k in list(Path(path).glob('txt')) + list(Path(path).glob('*/')) if k.stem != 'put-trainer-datasets-here']), key=natural_keys)
return ['None'] + sorted(set([k.stem for k in Path(path).glob(f'*.{ext}') if k.stem != 'put-trainer-datasets-here']), key=natural_keys) return ['None'] + sorted(set([k.stem for k in Path(path).glob(f'*.{ext}') if k.stem != 'put-trainer-datasets-here']), key=natural_keys)

View File

@ -16,10 +16,12 @@ safetensors==0.3.1
sentencepiece sentencepiece
tqdm tqdm
scipy scipy
tensorboard
wandb
transformers==4.30.2 transformers==4.30.2
git+https://github.com/huggingface/peft@03eb378eb914fbee709ff7c86ba5b1d033b89524 git+https://github.com/huggingface/peft@03eb378eb914fbee709ff7c86ba5b1d033b89524
bitsandbytes==0.39.1; platform_system != "Windows" bitsandbytes==0.40.0; platform_system != "Windows"
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl; platform_system == "Windows" https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.40.0-py3-none-win_amd64.whl; platform_system == "Windows"
llama-cpp-python==0.1.70; platform_system != "Windows" llama-cpp-python==0.1.70; platform_system != "Windows"
https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.70/llama_cpp_python-0.1.70-cp310-cp310-win_amd64.whl; platform_system == "Windows" https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.70/llama_cpp_python-0.1.70-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows" https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"

View File

@ -54,7 +54,7 @@ from modules.utils import gradio
def load_model_wrapper(selected_model, loader, autoload=False): def load_model_wrapper(selected_model, loader, autoload=False):
if not autoload: if not autoload:
yield f"The settings for {selected_model} have been updated.\nClick on \"Load the model\" to load it." yield f"The settings for {selected_model} have been updated.\nClick on \"Load\" to load it."
return return
if selected_model == 'None': if selected_model == 'None':
@ -145,7 +145,13 @@ def download_model_wrapper(repo_id, progress=gr.Progress()):
links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=False) links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=False)
yield ("Getting the output folder") yield ("Getting the output folder")
output_folder = downloader.get_output_folder(model, branch, is_lora) models_dir = Path(shared.args.model_dir)
# If the last part of the path is "models", remove it
if models_dir.name.lower() == 'models':
models_dir = models_dir.parent
output_folder = downloader.get_output_folder(model, branch, is_lora, base_folder=models_dir)
if check: if check:
progress(0.5) progress(0.5)
@ -218,8 +224,8 @@ def create_model_menus():
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch) shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers) shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers)
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx) shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx)
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None") shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=str(shared.args.wbits) if shared.args.wbits > 0 else "None")
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None") shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=str(shared.args.groupsize) if shared.args.groupsize > 0 else "None")
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None") shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None")
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0) shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
shared.gradio['autogptq_info'] = gr.Markdown('On some systems, AutoGPTQ can be 2x slower than GPTQ-for-LLaMa. You can manually select the GPTQ-for-LLaMa loader above.') shared.gradio['autogptq_info'] = gr.Markdown('On some systems, AutoGPTQ can be 2x slower than GPTQ-for-LLaMa. You can manually select the GPTQ-for-LLaMa loader above.')
@ -242,6 +248,7 @@ def create_model_menus():
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit) shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant) shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap) shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
shared.gradio['low_vram'] = gr.Checkbox(label="low-vram", value=shared.args.low_vram)
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock) shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed) shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.') shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
@ -976,7 +983,7 @@ def create_interface():
lambda: 'characters/instruction-following/', None, gradio('delete_root')).then( lambda: 'characters/instruction-following/', None, gradio('delete_root')).then(
lambda: gr.update(visible=True), None, gradio('file_deleter')) lambda: gr.update(visible=True), None, gradio('file_deleter'))
shared.gradio['download_button'].click(chat.save_history, gradio('history'), gradio('download')) shared.gradio['download_button'].click(chat.save_history_at_user_request, gradio('history', 'character_menu', 'mode'), gradio('download'))
shared.gradio['Submit character'].click(chat.upload_character, gradio('upload_json', 'upload_img_bot'), gradio('character_menu')) shared.gradio['Submit character'].click(chat.upload_character, gradio('upload_json', 'upload_img_bot'), gradio('character_menu'))
shared.gradio['upload_json'].upload(lambda: gr.update(interactive=True), None, gradio('Submit character')) shared.gradio['upload_json'].upload(lambda: gr.update(interactive=True), None, gradio('Submit character'))
shared.gradio['upload_json'].clear(lambda: gr.update(interactive=False), None, gradio('Submit character')) shared.gradio['upload_json'].clear(lambda: gr.update(interactive=False), None, gradio('Submit character'))

View File

@ -0,0 +1 @@
to load multiple raw text files create a subdirectory and put them all there