Merge branch 'main' of github.com:oobabooga/text-generation-webui

This commit is contained in:
oobabooga 2023-04-09 23:19:53 -03:00
commit 65552d2157
4 changed files with 185 additions and 0 deletions

View File

@ -215,6 +215,8 @@ Optionally, you can use the following command-line flags:
| `--load-in-8bit` | Load the model with 8-bit precision.| | `--load-in-8bit` | Load the model with 8-bit precision.|
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | | `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
| `--no-cache` | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. | | `--no-cache` | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. |
| `--xformers` | Use xformer's memory efficient attention. This should increase your tokens/s. |
| `--sdp-attention` | Use torch 2.0's sdp attention. |
#### llama.cpp #### llama.cpp

View File

@ -0,0 +1,176 @@
import math
import sys
import torch
import torch.nn as nn
import transformers.models.llama.modeling_llama
from typing import Optional
from typing import Tuple
import modules.shared as shared
if shared.args.xformers:
try:
import xformers.ops
except Exception:
print("🔴 xformers not found! Please install it before trying to use it.", file=sys.stderr)
def hijack_llama_attention():
if shared.args.xformers:
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
print("Replaced attention with xformers_attention")
elif shared.args.sdp_attention:
transformers.models.llama.modeling_llama.LlamaAttention.forward = sdp_attention_forward
print("Replaced attention with sdp_attention")
def xformers_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
#We only apply xformers optimizations if we don't need to output the whole attention matrix
if not output_attentions:
dtype = query_states.dtype
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
#This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
#We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
# input and output should be of form (bsz, q_len, num_heads, head_dim)
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=None)
else:
# input and output should be of form (bsz, q_len, num_heads, head_dim)
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=xformers.ops.LowerTriangularMask())
attn_weights = None
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value
def sdp_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
#We only apply sdp attention if we don't need to output the whole attention matrix
if not output_attentions:
attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, is_causal=False)
attn_weights = None
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value

View File

@ -14,6 +14,7 @@ from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, LlamaTokenizer) BitsAndBytesConfig, LlamaTokenizer)
import modules.shared as shared import modules.shared as shared
from modules import llama_attn_hijack
transformers.logging.set_verbosity_error() transformers.logging.set_verbosity_error()
@ -169,6 +170,10 @@ def load_model(model_name):
model = AutoModelForCausalLM.from_pretrained(checkpoint, **params) model = AutoModelForCausalLM.from_pretrained(checkpoint, **params)
# Hijack attention with xformers
if any((shared.args.xformers, shared.args.sdp_attention)):
llama_attn_hijack.hijack_llama_attention()
# Loading the tokenizer # Loading the tokenizer
if any((k in shared.model_name.lower() for k in ['gpt4chan', 'gpt-4chan'])) and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists(): if any((k in shared.model_name.lower() for k in ['gpt4chan', 'gpt-4chan'])) and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists():
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/")) tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/"))

View File

@ -98,6 +98,8 @@ parser.add_argument('--disk-cache-dir', type=str, default="cache", help='Directo
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.') parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
parser.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces the VRAM usage a bit at a performance cost.') parser.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces the VRAM usage a bit at a performance cost.')
parser.add_argument('--xformers', action='store_true', help="Use xformer's memory efficient attention. This should increase your tokens/s.")
parser.add_argument('--sdp-attention', action='store_true', help="Use torch 2.0's sdp attention.")
# llama.cpp # llama.cpp
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use in llama.cpp.') parser.add_argument('--threads', type=int, default=0, help='Number of threads to use in llama.cpp.')