Merge branch 'main' into HideLord-main

This commit is contained in:
oobabooga 2023-03-15 12:08:56 -03:00
commit 693b53d957
17 changed files with 317 additions and 151 deletions

View File

@ -0,0 +1,53 @@
name: "Bug report"
description: Report a bug
labels: [ "bug" ]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: textarea
id: bug-description
attributes:
label: Describe the bug
description: A clear and concise description of what the bug is.
placeholder: Bug description
validations:
required: true
- type: checkboxes
attributes:
label: Is there an existing issue for this?
description: Please search to see if an issue already exists for the issue you encountered.
options:
- label: I have searched the existing issues
required: true
- type: textarea
id: reproduction
attributes:
label: Reproduction
description: Please provide the steps necessary to reproduce your issue.
placeholder: Reproduction
validations:
required: true
- type: textarea
id: screenshot
attributes:
label: Screenshot
description: "If possible, please include screenshot(s) so that we can understand what the issue is."
- type: textarea
id: logs
attributes:
label: Logs
description: "Please include the full stacktrace of the errors you get in the command-line (if any)."
render: shell
validations:
required: true
- type: textarea
id: system-info
attributes:
label: System Info
description: "Please share your system info with us: operating system, GPU brand, and GPU model. If you are using a Google Colab notebook, mention that instead."
render: shell
placeholder:
validations:
required: true

View File

@ -0,0 +1,16 @@
---
name: Feature request
about: Suggest an improvement or new feature for the web UI
title: ''
labels: 'enhancement'
assignees: ''
---
**Description**
A clear and concise description of what you want to be implemented.
**Additional Context**
If applicable, please provide any extra information, external links, or screenshots that could be useful.

11
.github/dependabot.yml vendored Normal file
View File

@ -0,0 +1,11 @@
# To get started with Dependabot version updates, you'll need to specify which
# package ecosystems to update and where the package manifests are located.
# Please see the documentation for all configuration options:
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
version: 2
updates:
- package-ecosystem: "pip" # See documentation for possible values
directory: "/" # Location of package manifests
schedule:
interval: "weekly"

22
.github/workflows/stale.yml vendored Normal file
View File

@ -0,0 +1,22 @@
name: Close inactive issues
on:
schedule:
- cron: "10 23 * * *"
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
stale-issue-message: ""
close-issue-message: "This issue has been closed due to inactivity for 30 days. If you believe it is still relevant, you can reopen it (if you are the author) or leave a comment below."
days-before-issue-stale: 30
days-before-issue-close: 0
stale-issue-label: "stale"
days-before-pr-stale: -1
days-before-pr-close: -1
repo-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -60,7 +60,9 @@ pip3 install torch torchvision torchaudio --extra-index-url https://download.pyt
conda install pytorch torchvision torchaudio git -c pytorch conda install pytorch torchvision torchaudio git -c pytorch
``` ```
See also: [Installation instructions for human beings](https://github.com/oobabooga/text-generation-webui/wiki/Installation-instructions-for-human-beings). > **Note**
> 1. If you are on Windows, it may be easier to run the commands above in a WSL environment. The performance may also be better.
> 2. For a more detailed, user-contributed guide, see: [Installation instructions for human beings](https://github.com/oobabooga/text-generation-webui/wiki/Installation-instructions-for-human-beings).
## Installation option 2: one-click installers ## Installation option 2: one-click installers
@ -140,8 +142,9 @@ Optionally, you can use the following command-line flags:
| `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. | | `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. |
| `--cpu` | Use the CPU to generate text.| | `--cpu` | Use the CPU to generate text.|
| `--load-in-8bit` | Load the model with 8-bit precision.| | `--load-in-8bit` | Load the model with 8-bit precision.|
| `--load-in-4bit` | Load the model with 4-bit precision. Currently only works with LLaMA.| | `--load-in-4bit` | DEPRECATED: use `--gptq-bits 4` instead. |
| `--gptq-bits GPTQ_BITS` | Load a pre-quantized model with specified precision. 2, 3, 4 and 8 (bit) are supported. Currently only works with LLaMA. | | `--gptq-bits GPTQ_BITS` | Load a pre-quantized model with specified precision. 2, 3, 4 and 8 (bit) are supported. Currently only works with LLaMA and OPT. |
| `--gptq-model-type MODEL_TYPE` | Model type of pre-quantized model. Currently only LLaMa and OPT are supported. |
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | | `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.| | `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.|
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | | `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |

View File

@ -26,6 +26,7 @@ async def run(context):
'top_p': 0.9, 'top_p': 0.9,
'typical_p': 1, 'typical_p': 1,
'repetition_penalty': 1.05, 'repetition_penalty': 1.05,
'encoder_repetition_penalty': 1.0,
'top_k': 0, 'top_k': 0,
'min_length': 0, 'min_length': 0,
'no_repeat_ngram_size': 0, 'no_repeat_ngram_size': 0,
@ -59,6 +60,7 @@ async def run(context):
params['top_p'], params['top_p'],
params['typical_p'], params['typical_p'],
params['repetition_penalty'], params['repetition_penalty'],
params['encoder_repetition_penalty'],
params['top_k'], params['top_k'],
params['min_length'], params['min_length'],
params['no_repeat_ngram_size'], params['no_repeat_ngram_size'],

View File

@ -24,6 +24,7 @@ params = {
'top_p': 0.9, 'top_p': 0.9,
'typical_p': 1, 'typical_p': 1,
'repetition_penalty': 1.05, 'repetition_penalty': 1.05,
'encoder_repetition_penalty': 1.0,
'top_k': 0, 'top_k': 0,
'min_length': 0, 'min_length': 0,
'no_repeat_ngram_size': 0, 'no_repeat_ngram_size': 0,
@ -45,6 +46,7 @@ response = requests.post(f"http://{server}:7860/run/textgen", json={
params['top_p'], params['top_p'],
params['typical_p'], params['typical_p'],
params['repetition_penalty'], params['repetition_penalty'],
params['encoder_repetition_penalty'],
params['top_k'], params['top_k'],
params['min_length'], params['min_length'],
params['no_repeat_ngram_size'], params['no_repeat_ngram_size'],

View File

@ -76,7 +76,7 @@ def generate_html():
return container_html return container_html
def ui(): def ui():
with gr.Accordion("Character gallery"): with gr.Accordion("Character gallery", open=False):
update = gr.Button("Refresh") update = gr.Button("Refresh")
gallery = gr.HTML(value=generate_html()) gallery = gr.HTML(value=generate_html())
update.click(generate_html, [], gallery) update.click(generate_html, [], gallery)

View File

@ -81,6 +81,7 @@ def input_modifier(string):
if (shared.args.chat or shared.args.cai_chat) and len(shared.history['internal']) > 0: if (shared.args.chat or shared.args.cai_chat) and len(shared.history['internal']) > 0:
shared.history['visible'][-1] = [shared.history['visible'][-1][0], shared.history['visible'][-1][1].replace('controls autoplay>','controls>')] shared.history['visible'][-1] = [shared.history['visible'][-1][0], shared.history['visible'][-1][1].replace('controls autoplay>','controls>')]
shared.processing_message = "*Is recording a voice message...*"
return string return string
def output_modifier(string): def output_modifier(string):
@ -119,6 +120,7 @@ def output_modifier(string):
if params['show_text']: if params['show_text']:
string += f'\n\n{original_string}' string += f'\n\n{original_string}'
shared.processing_message = "*Is typing...*"
return string return string
def bot_prefix_modifier(string): def bot_prefix_modifier(string):

View File

@ -7,28 +7,40 @@ import torch
import modules.shared as shared import modules.shared as shared
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
from llama import load_quant import llama
import opt
# 4-bit LLaMA def load_quantized(model_name):
def load_quantized_LLaMA(model_name): if not shared.args.gptq_model_type:
if shared.args.load_in_4bit: # Try to determine model type from model name
bits = 4 model_type = model_name.split('-')[0].lower()
if model_type not in ('llama', 'opt'):
print("Can't determine model type from model name. Please specify it manually using --gptq-model-type "
"argument")
exit()
else: else:
bits = shared.args.gptq_bits model_type = shared.args.gptq_model_type.lower()
if model_type == 'llama':
load_quant = llama.load_quant
elif model_type == 'opt':
load_quant = opt.load_quant
else:
print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported")
exit()
path_to_model = Path(f'models/{model_name}') path_to_model = Path(f'models/{model_name}')
pt_model = ''
if path_to_model.name.lower().startswith('llama-7b'): if path_to_model.name.lower().startswith('llama-7b'):
pt_model = f'llama-7b-{bits}bit.pt' pt_model = f'llama-7b-{shared.args.gptq_bits}bit.pt'
elif path_to_model.name.lower().startswith('llama-13b'): elif path_to_model.name.lower().startswith('llama-13b'):
pt_model = f'llama-13b-{bits}bit.pt' pt_model = f'llama-13b-{shared.args.gptq_bits}bit.pt'
elif path_to_model.name.lower().startswith('llama-30b'): elif path_to_model.name.lower().startswith('llama-30b'):
pt_model = f'llama-30b-{bits}bit.pt' pt_model = f'llama-30b-{shared.args.gptq_bits}bit.pt'
elif path_to_model.name.lower().startswith('llama-65b'): elif path_to_model.name.lower().startswith('llama-65b'):
pt_model = f'llama-65b-{bits}bit.pt' pt_model = f'llama-65b-{shared.args.gptq_bits}bit.pt'
else: else:
pt_model = f'{model_name}-{bits}bit.pt' pt_model = f'{model_name}-{shared.args.gptq_bits}bit.pt'
# Try to find the .pt both in models/ and in the subfolder # Try to find the .pt both in models/ and in the subfolder
pt_path = None pt_path = None
@ -40,7 +52,7 @@ def load_quantized_LLaMA(model_name):
print(f"Could not find {pt_model}, exiting...") print(f"Could not find {pt_model}, exiting...")
exit() exit()
model = load_quant(str(path_to_model), str(pt_path), bits) model = load_quant(str(path_to_model), str(pt_path), shared.args.gptq_bits)
# Multiple GPUs or GPU+CPU # Multiple GPUs or GPU+CPU
if shared.args.gpu_memory: if shared.args.gpu_memory:

View File

@ -97,7 +97,7 @@ def extract_message_from_reply(question, reply, name1, name2, check, impersonate
def stop_everything_event(): def stop_everything_event():
shared.stop_everything = True shared.stop_everything = True
def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1, regenerate=False): def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1, regenerate=False):
shared.stop_everything = False shared.stop_everything = False
just_started = True just_started = True
eos_token = '\n' if check else None eos_token = '\n' if check else None
@ -126,13 +126,14 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
else: else:
prompt = custom_generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size) prompt = custom_generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size)
# Yield *Is typing...*
if not regenerate: if not regenerate:
yield shared.history['visible']+[[visible_text, '*Is typing...*']] yield shared.history['visible']+[[visible_text, shared.processing_message]]
# Generate # Generate
reply = '' reply = ''
for i in range(chat_generation_attempts): for i in range(chat_generation_attempts):
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"): for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
# Extracting the reply # Extracting the reply
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check) reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check)
@ -159,7 +160,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
yield shared.history['visible'] yield shared.history['visible']
def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1): def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
eos_token = '\n' if check else None eos_token = '\n' if check else None
if 'pygmalion' in shared.model_name.lower(): if 'pygmalion' in shared.model_name.lower():
@ -168,28 +169,29 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size, impersonate=True) prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size, impersonate=True)
reply = '' reply = ''
yield '*Is typing...*' # Yield *Is typing...*
yield shared.processing_message
for i in range(chat_generation_attempts): for i in range(chat_generation_attempts):
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"): for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True) reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
yield reply yield reply
if next_character_found: if next_character_found:
break break
yield reply yield reply
def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1): def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
for _history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts): for _history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts):
yield generate_chat_html(_history, name1, name2, shared.character) yield generate_chat_html(_history, name1, name2, shared.character)
def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1): def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
if (shared.character != 'None' and len(shared.history['visible']) == 1) or len(shared.history['internal']) == 0: if (shared.character != 'None' and len(shared.history['visible']) == 1) or len(shared.history['internal']) == 0:
yield generate_chat_output(shared.history['visible'], name1, name2, shared.character) yield generate_chat_output(shared.history['visible'], name1, name2, shared.character)
else: else:
last_visible = shared.history['visible'].pop() last_visible = shared.history['visible'].pop()
last_internal = shared.history['internal'].pop() last_internal = shared.history['internal'].pop()
# Yield '*Is typing...*'
yield generate_chat_output(shared.history['visible']+[[last_visible[0], '*Is typing...*']], name1, name2, shared.character) yield generate_chat_output(shared.history['visible']+[[last_visible[0], shared.processing_message]], name1, name2, shared.character)
for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts, regenerate=True): for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts, regenerate=True):
if shared.args.cai_chat: if shared.args.cai_chat:
shared.history['visible'][-1] = [last_visible[0], _history[-1][1]] shared.history['visible'][-1] = [last_visible[0], _history[-1][1]]
else: else:

View File

@ -1,6 +1,5 @@
import json import json
import os import os
import sys
import time import time
import zipfile import zipfile
from pathlib import Path from pathlib import Path
@ -35,6 +34,7 @@ if shared.args.deepspeed:
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
def load_model(model_name): def load_model(model_name):
print(f"Loading {model_name}...") print(f"Loading {model_name}...")
t0 = time.time() t0 = time.time()
@ -42,7 +42,7 @@ def load_model(model_name):
shared.is_RWKV = model_name.lower().startswith('rwkv-') shared.is_RWKV = model_name.lower().startswith('rwkv-')
# Default settings # Default settings
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.gptq_bits > 0, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]): if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')): if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
else: else:
@ -87,11 +87,11 @@ def load_model(model_name):
return model, tokenizer return model, tokenizer
# 4-bit LLaMA # Quantized model
elif shared.args.gptq_bits > 0 or shared.args.load_in_4bit: elif shared.args.gptq_bits > 0:
from modules.quantized_LLaMA import load_quantized_LLaMA from modules.GPTQ_loader import load_quantized
model = load_quantized_LLaMA(model_name) model = load_quantized(model_name)
# Custom # Custom
else: else:

View File

@ -11,6 +11,7 @@ is_RWKV = False
history = {'internal': [], 'visible': []} history = {'internal': [], 'visible': []}
character = 'None' character = 'None'
stop_everything = False stop_everything = False
processing_message = '*Is typing...*'
# UI elements (buttons, sliders, HTML, etc) # UI elements (buttons, sliders, HTML, etc)
gradio = {} gradio = {}
@ -68,8 +69,9 @@ parser.add_argument('--chat', action='store_true', help='Launch the web UI in ch
parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.') parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.') parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.') parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision. Currently only works with LLaMA.') parser.add_argument('--load-in-4bit', action='store_true', help='DEPRECATED: use --gptq-bits 4 instead.')
parser.add_argument('--gptq-bits', type=int, default=0, help='Load a pre-quantized model with specified precision. 2, 3, 4 and 8bit are supported. Currently only works with LLaMA.') parser.add_argument('--gptq-bits', type=int, default=0, help='Load a pre-quantized model with specified precision. 2, 3, 4 and 8bit are supported. Currently only works with LLaMA and OPT.')
parser.add_argument('--gptq-model-type', type=str, help='Model type of pre-quantized model. Currently only LLaMa and OPT are supported.')
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.') parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.') parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
@ -94,3 +96,8 @@ parser.add_argument('--share', action='store_true', help='Create a public URL. T
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.') parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.') parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
args = parser.parse_args() args = parser.parse_args()
# Provisional, this will be deleted later
if args.load_in_4bit:
print("Warning: --load-in-4bit is deprecated and will be removed. Use --gptq-bits 4 instead.\n")
args.gptq_bits = 4

View File

@ -89,7 +89,7 @@ def clear_torch_cache():
if not shared.args.cpu: if not shared.args.cpu:
torch.cuda.empty_cache() torch.cuda.empty_cache()
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None): def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
clear_torch_cache() clear_torch_cache()
t0 = time.time() t0 = time.time()
@ -122,7 +122,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
input_ids = encode(question, max_new_tokens) input_ids = encode(question, max_new_tokens)
original_input_ids = input_ids original_input_ids = input_ids
output = input_ids[0] output = input_ids[0]
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()" cuda = not any((shared.args.cpu, shared.args.deepspeed, shared.args.flexgen))
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
if eos_token is not None: if eos_token is not None:
eos_token_ids.append(int(encode(eos_token)[0][-1])) eos_token_ids.append(int(encode(eos_token)[0][-1]))
@ -132,45 +132,49 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
t = encode(stopping_string, 0, add_special_tokens=False) t = encode(stopping_string, 0, add_special_tokens=False)
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0]))) stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
generate_params = {}
if not shared.args.flexgen: if not shared.args.flexgen:
generate_params = [ generate_params.update({
f"max_new_tokens=max_new_tokens", "max_new_tokens": max_new_tokens,
f"eos_token_id={eos_token_ids}", "eos_token_id": eos_token_ids,
f"stopping_criteria=stopping_criteria_list", "stopping_criteria": stopping_criteria_list,
f"do_sample={do_sample}", "do_sample": do_sample,
f"temperature={temperature}", "temperature": temperature,
f"top_p={top_p}", "top_p": top_p,
f"typical_p={typical_p}", "typical_p": typical_p,
f"repetition_penalty={repetition_penalty}", "repetition_penalty": repetition_penalty,
f"top_k={top_k}", "encoder_repetition_penalty": encoder_repetition_penalty,
f"min_length={min_length if shared.args.no_stream else 0}", "top_k": top_k,
f"no_repeat_ngram_size={no_repeat_ngram_size}", "min_length": min_length if shared.args.no_stream else 0,
f"num_beams={num_beams}", "no_repeat_ngram_size": no_repeat_ngram_size,
f"penalty_alpha={penalty_alpha}", "num_beams": num_beams,
f"length_penalty={length_penalty}", "penalty_alpha": penalty_alpha,
f"early_stopping={early_stopping}", "length_penalty": length_penalty,
] "early_stopping": early_stopping,
})
else: else:
generate_params = [ generate_params.update({
f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}", "max_new_tokens": max_new_tokens if shared.args.no_stream else 8,
f"do_sample={do_sample}", "do_sample": do_sample,
f"temperature={temperature}", "temperature": temperature,
f"stop={eos_token_ids[-1]}", "stop": eos_token_ids[-1],
] })
if shared.args.deepspeed: if shared.args.deepspeed:
generate_params.append("synced_gpus=True") generate_params.update({"synced_gpus": True})
if shared.soft_prompt: if shared.soft_prompt:
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids) inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
generate_params.insert(0, "inputs_embeds=inputs_embeds") generate_params.update({"inputs_embeds": inputs_embeds})
generate_params.insert(0, "inputs=filler_input_ids") generate_params.update({"inputs": filler_input_ids})
else: else:
generate_params.insert(0, "inputs=input_ids") generate_params.update({"inputs": input_ids})
try: try:
# Generate the entire reply at once. # Generate the entire reply at once.
if shared.args.no_stream: if shared.args.no_stream:
with torch.no_grad(): with torch.no_grad():
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0] output = shared.model.generate(**generate_params)[0]
if cuda:
output = output.cuda()
if shared.soft_prompt: if shared.soft_prompt:
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:])) output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
@ -194,7 +198,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
return Iteratorize(generate_with_callback, kwargs, callback=None) return Iteratorize(generate_with_callback, kwargs, callback=None)
yield formatted_outputs(original_question, shared.model_name) yield formatted_outputs(original_question, shared.model_name)
with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator: with generate_with_streaming(**generate_params) as generator:
for output in generator: for output in generator:
if shared.soft_prompt: if shared.soft_prompt:
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:])) output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
@ -214,7 +218,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
for i in range(max_new_tokens//8+1): for i in range(max_new_tokens//8+1):
clear_torch_cache() clear_torch_cache()
with torch.no_grad(): with torch.no_grad():
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0] output = shared.model.generate(**generate_params)[0]
if shared.soft_prompt: if shared.soft_prompt:
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:])) output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
reply = decode(output) reply = decode(output)

View File

@ -38,6 +38,9 @@ svg {
ol li p, ul li p { ol li p, ul li p {
display: inline-block; display: inline-block;
} }
#main, #settings, #extensions, #chat-settings {
border: 0;
}
""" """
chat_css = """ chat_css = """
@ -64,6 +67,12 @@ div.svelte-362y77>*, div.svelte-362y77>.form>* {
} }
""" """
page_js = """
document.getElementById("main").parentNode.childNodes[0].style = "border: none; background-color: #8080802b; margin-bottom: 40px"
document.getElementById("main").parentNode.style = "padding: 0; margin: 0"
document.getElementById("main").parentNode.parentNode.parentNode.style = "padding: 0"
"""
class ToolButton(gr.Button, gr.components.FormComponent): class ToolButton(gr.Button, gr.components.FormComponent):
"""Small button with single emoji as text, fits inside gradio forms""" """Small button with single emoji as text, fits inside gradio forms"""

View File

@ -1,10 +1,10 @@
accelerate==0.17.0 accelerate==0.17.1
bitsandbytes==0.37.0 bitsandbytes==0.37.1
flexgen==0.1.7 flexgen==0.1.7
gradio==3.18.0 gradio==3.18.0
numpy numpy
requests requests
rwkv==0.3.1 rwkv==0.4.2
safetensors==0.3.0 safetensors==0.3.0
sentencepiece sentencepiece
tqdm tqdm

View File

@ -66,6 +66,7 @@ def load_preset_values(preset_menu, return_dict=False):
'top_p': 1, 'top_p': 1,
'typical_p': 1, 'typical_p': 1,
'repetition_penalty': 1, 'repetition_penalty': 1,
'encoder_repetition_penalty': 1,
'top_k': 50, 'top_k': 50,
'num_beams': 1, 'num_beams': 1,
'penalty_alpha': 0, 'penalty_alpha': 0,
@ -86,7 +87,7 @@ def load_preset_values(preset_menu, return_dict=False):
if return_dict: if return_dict:
return generate_params return generate_params
else: else:
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping'] return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['encoder_repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
def upload_soft_prompt(file): def upload_soft_prompt(file):
with zipfile.ZipFile(io.BytesIO(file)) as zf: with zipfile.ZipFile(io.BytesIO(file)) as zf:
@ -100,9 +101,7 @@ def upload_soft_prompt(file):
return name return name
def create_settings_menus(default_preset): def create_model_and_preset_menus():
generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive', return_dict=True)
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
with gr.Row(): with gr.Row():
@ -113,22 +112,29 @@ def create_settings_menus(default_preset):
shared.gradio['preset_menu'] = gr.Dropdown(choices=available_presets, value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset') shared.gradio['preset_menu'] = gr.Dropdown(choices=available_presets, value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
ui.create_refresh_button(shared.gradio['preset_menu'], lambda : None, lambda : {'choices': get_available_presets()}, 'refresh-button') ui.create_refresh_button(shared.gradio['preset_menu'], lambda : None, lambda : {'choices': get_available_presets()}, 'refresh-button')
with gr.Accordion('Custom generation parameters', open=False, elem_id='accordion'): def create_settings_menus(default_preset):
generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive', return_dict=True)
with gr.Box():
gr.Markdown('Custom generation parameters')
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature') shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature')
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 2.99, value=generate_params['repetition_penalty'],step=0.01,label='repetition_penalty')
shared.gradio['top_k'] = gr.Slider(0,200,value=generate_params['top_k'],step=1,label='top_k')
shared.gradio['top_p'] = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label='top_p') shared.gradio['top_p'] = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label='top_p')
with gr.Column(): shared.gradio['top_k'] = gr.Slider(0,200,value=generate_params['top_k'],step=1,label='top_k')
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
shared.gradio['typical_p'] = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label='typical_p') shared.gradio['typical_p'] = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label='typical_p')
with gr.Column():
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'],step=0.01,label='repetition_penalty')
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'],step=0.01,label='encoder_repetition_penalty')
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size') shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'] if shared.args.no_stream else 0, label='min_length', interactive=shared.args.no_stream) shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'] if shared.args.no_stream else 0, label='min_length', interactive=shared.args.no_stream)
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
with gr.Box():
gr.Markdown('Contrastive search:') gr.Markdown('Contrastive search:')
shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha') shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha')
with gr.Box():
gr.Markdown('Beam search (uses a lot of VRAM):') gr.Markdown('Beam search (uses a lot of VRAM):')
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
@ -137,7 +143,8 @@ def create_settings_menus(default_preset):
shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty') shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping') shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')
with gr.Accordion('Soft prompt', open=False, elem_id='accordion'): with gr.Box():
gr.Markdown('Soft prompt')
with gr.Row(): with gr.Row():
shared.gradio['softprompts_menu'] = gr.Dropdown(choices=available_softprompts, value='None', label='Soft prompt') shared.gradio['softprompts_menu'] = gr.Dropdown(choices=available_softprompts, value='None', label='Soft prompt')
ui.create_refresh_button(shared.gradio['softprompts_menu'], lambda : None, lambda : {'choices': get_available_softprompts()}, 'refresh-button') ui.create_refresh_button(shared.gradio['softprompts_menu'], lambda : None, lambda : {'choices': get_available_softprompts()}, 'refresh-button')
@ -147,7 +154,7 @@ def create_settings_menus(default_preset):
shared.gradio['upload_softprompt'] = gr.File(type='binary', file_types=['.zip']) shared.gradio['upload_softprompt'] = gr.File(type='binary', file_types=['.zip'])
shared.gradio['model_menu'].change(load_model_wrapper, [shared.gradio['model_menu']], [shared.gradio['model_menu']], show_progress=True) shared.gradio['model_menu'].change(load_model_wrapper, [shared.gradio['model_menu']], [shared.gradio['model_menu']], show_progress=True)
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio['do_sample'], shared.gradio['temperature'], shared.gradio['top_p'], shared.gradio['typical_p'], shared.gradio['repetition_penalty'], shared.gradio['top_k'], shared.gradio['min_length'], shared.gradio['no_repeat_ngram_size'], shared.gradio['num_beams'], shared.gradio['penalty_alpha'], shared.gradio['length_penalty'], shared.gradio['early_stopping']]) shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio['do_sample'], shared.gradio['temperature'], shared.gradio['top_p'], shared.gradio['typical_p'], shared.gradio['repetition_penalty'], shared.gradio['encoder_repetition_penalty'], shared.gradio['top_k'], shared.gradio['min_length'], shared.gradio['no_repeat_ngram_size'], shared.gradio['num_beams'], shared.gradio['penalty_alpha'], shared.gradio['length_penalty'], shared.gradio['early_stopping']])
shared.gradio['softprompts_menu'].change(load_soft_prompt, [shared.gradio['softprompts_menu']], [shared.gradio['softprompts_menu']], show_progress=True) shared.gradio['softprompts_menu'].change(load_soft_prompt, [shared.gradio['softprompts_menu']], [shared.gradio['softprompts_menu']], show_progress=True)
shared.gradio['upload_softprompt'].upload(upload_soft_prompt, [shared.gradio['upload_softprompt']], [shared.gradio['softprompts_menu']]) shared.gradio['upload_softprompt'].upload(upload_soft_prompt, [shared.gradio['upload_softprompt']], [shared.gradio['softprompts_menu']])
@ -200,6 +207,7 @@ suffix = '_pygmalion' if 'pygmalion' in shared.model_name.lower() else ''
if shared.args.chat or shared.args.cai_chat: if shared.args.chat or shared.args.cai_chat:
with gr.Blocks(css=ui.css+ui.chat_css, analytics_enabled=False, title=title) as shared.gradio['interface']: with gr.Blocks(css=ui.css+ui.chat_css, analytics_enabled=False, title=title) as shared.gradio['interface']:
with gr.Tab("Text generation", elem_id="main"):
if shared.args.cai_chat: if shared.args.cai_chat:
shared.gradio['display'] = gr.HTML(value=generate_chat_html(shared.history['visible'], shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}'], shared.character)) shared.gradio['display'] = gr.HTML(value=generate_chat_html(shared.history['visible'], shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}'], shared.character))
else: else:
@ -219,7 +227,21 @@ if shared.args.chat or shared.args.cai_chat:
shared.gradio['Clear history'] = gr.Button('Clear history') shared.gradio['Clear history'] = gr.Button('Clear history')
shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant="stop", visible=False) shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant="stop", visible=False)
shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False) shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False)
with gr.Tab('Chat settings'):
create_model_and_preset_menus()
with gr.Box():
with gr.Row():
with gr.Column():
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
shared.gradio['chat_prompt_size_slider'] = gr.Slider(minimum=shared.settings['chat_prompt_size_min'], maximum=shared.settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=shared.settings['chat_prompt_size'])
with gr.Column():
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)')
if shared.args.extensions is not None:
extensions_module.create_extensions_block()
with gr.Tab("Chat settings", elem_id="chat-settings"):
shared.gradio['name1'] = gr.Textbox(value=shared.settings[f'name1{suffix}'], lines=1, label='Your name') shared.gradio['name1'] = gr.Textbox(value=shared.settings[f'name1{suffix}'], lines=1, label='Your name')
shared.gradio['name2'] = gr.Textbox(value=shared.settings[f'name2{suffix}'], lines=1, label='Bot\'s name') shared.gradio['name2'] = gr.Textbox(value=shared.settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
shared.gradio['context'] = gr.Textbox(value=shared.settings[f'context{suffix}'], lines=5, label='Context') shared.gradio['context'] = gr.Textbox(value=shared.settings[f'context{suffix}'], lines=5, label='Context')
@ -253,23 +275,13 @@ if shared.args.chat or shared.args.cai_chat:
with gr.Tab('Upload TavernAI Character Card'): with gr.Tab('Upload TavernAI Character Card'):
shared.gradio['upload_img_tavern'] = gr.File(type='binary', file_types=['image']) shared.gradio['upload_img_tavern'] = gr.File(type='binary', file_types=['image'])
with gr.Tab('Generation settings'): with gr.Tab("Settings", elem_id="settings"):
with gr.Row():
with gr.Column():
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
with gr.Column():
shared.gradio['chat_prompt_size_slider'] = gr.Slider(minimum=shared.settings['chat_prompt_size_min'], maximum=shared.settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=shared.settings['chat_prompt_size'])
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)')
create_settings_menus(default_preset) create_settings_menus(default_preset)
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
if shared.args.extensions is not None:
with gr.Tab('Extensions'):
extensions_module.create_extensions_block()
function_call = 'chat.cai_chatbot_wrapper' if shared.args.cai_chat else 'chat.chatbot_wrapper' function_call = 'chat.cai_chatbot_wrapper' if shared.args.cai_chat else 'chat.chatbot_wrapper'
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
gen_events.append(shared.gradio['Generate'].click(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream, api_name='textgen')) gen_events.append(shared.gradio['Generate'].click(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['textbox'].submit(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream)) gen_events.append(shared.gradio['textbox'].submit(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Regenerate'].click(chat.regenerate_wrapper, shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream)) gen_events.append(shared.gradio['Regenerate'].click(chat.regenerate_wrapper, shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Impersonate'].click(chat.impersonate_wrapper, shared.input_params, shared.gradio['textbox'], show_progress=shared.args.no_stream)) gen_events.append(shared.gradio['Impersonate'].click(chat.impersonate_wrapper, shared.input_params, shared.gradio['textbox'], show_progress=shared.args.no_stream))
@ -308,36 +320,42 @@ if shared.args.chat or shared.args.cai_chat:
shared.gradio['upload_img_me'].upload(reload_func, reload_inputs, [shared.gradio['display']]) shared.gradio['upload_img_me'].upload(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['Stop'].click(reload_func, reload_inputs, [shared.gradio['display']]) shared.gradio['Stop'].click(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.page_js}}}")
shared.gradio['interface'].load(lambda : chat.load_default_history(shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}']), None, None) shared.gradio['interface'].load(lambda : chat.load_default_history(shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}']), None, None)
shared.gradio['interface'].load(reload_func, reload_inputs, [shared.gradio['display']], show_progress=True) shared.gradio['interface'].load(reload_func, reload_inputs, [shared.gradio['display']], show_progress=True)
elif shared.args.notebook: elif shared.args.notebook:
with gr.Blocks(css=ui.css, analytics_enabled=False, title=title) as shared.gradio['interface']: with gr.Blocks(css=ui.css, analytics_enabled=False, title=title) as shared.gradio['interface']:
gr.Markdown(description) with gr.Tab("Text generation", elem_id="main"):
with gr.Tab('Raw'): with gr.Tab('Raw'):
shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=23) shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=25)
with gr.Tab('Markdown'): with gr.Tab('Markdown'):
shared.gradio['markdown'] = gr.Markdown() shared.gradio['markdown'] = gr.Markdown()
with gr.Tab('HTML'): with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML() shared.gradio['html'] = gr.HTML()
shared.gradio['Generate'] = gr.Button('Generate') with gr.Row():
shared.gradio['Stop'] = gr.Button('Stop') shared.gradio['Stop'] = gr.Button('Stop')
shared.gradio['Generate'] = gr.Button('Generate')
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens']) shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
create_settings_menus(default_preset) create_model_and_preset_menus()
if shared.args.extensions is not None: if shared.args.extensions is not None:
extensions_module.create_extensions_block() extensions_module.create_extensions_block()
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']] with gr.Tab("Settings", elem_id="settings"):
create_settings_menus(default_preset)
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']] output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen')) gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream)) gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
shared.gradio['Stop'].click(None, None, None, cancels=gen_events) shared.gradio['Stop'].click(None, None, None, cancels=gen_events)
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.page_js}}}")
else: else:
with gr.Blocks(css=ui.css, analytics_enabled=False, title=title) as shared.gradio['interface']: with gr.Blocks(css=ui.css, analytics_enabled=False, title=title) as shared.gradio['interface']:
gr.Markdown(description) with gr.Tab("Text generation", elem_id="main"):
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=15, label='Input') shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=15, label='Input')
@ -349,24 +367,27 @@ else:
with gr.Column(): with gr.Column():
shared.gradio['Stop'] = gr.Button('Stop') shared.gradio['Stop'] = gr.Button('Stop')
create_settings_menus(default_preset) create_model_and_preset_menus()
if shared.args.extensions is not None: if shared.args.extensions is not None:
extensions_module.create_extensions_block() extensions_module.create_extensions_block()
with gr.Column(): with gr.Column():
with gr.Tab('Raw'): with gr.Tab('Raw'):
shared.gradio['output_textbox'] = gr.Textbox(lines=15, label='Output') shared.gradio['output_textbox'] = gr.Textbox(lines=25, label='Output')
with gr.Tab('Markdown'): with gr.Tab('Markdown'):
shared.gradio['markdown'] = gr.Markdown() shared.gradio['markdown'] = gr.Markdown()
with gr.Tab('HTML'): with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML() shared.gradio['html'] = gr.HTML()
with gr.Tab("Settings", elem_id="settings"):
create_settings_menus(default_preset)
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']] shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']] output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen')) gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream)) gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Continue'].click(generate_reply, [shared.gradio['output_textbox']] + shared.input_params[1:], output_params, show_progress=shared.args.no_stream)) gen_events.append(shared.gradio['Continue'].click(generate_reply, [shared.gradio['output_textbox']] + shared.input_params[1:], output_params, show_progress=shared.args.no_stream))
shared.gradio['Stop'].click(None, None, None, cancels=gen_events) shared.gradio['Stop'].click(None, None, None, cancels=gen_events)
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.page_js}}}")
shared.gradio['interface'].queue() shared.gradio['interface'].queue()
if shared.args.listen: if shared.args.listen: