mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-12-01 20:04:04 +01:00
Add llama.cpp support (#447 from thomasantony/feature/llamacpp)
Documentation: https://github.com/oobabooga/text-generation-webui/wiki/llama.cpp-models
This commit is contained in:
commit
6fd70d0032
1
.gitignore
vendored
1
.gitignore
vendored
@ -14,6 +14,7 @@ torch-dumps
|
|||||||
*/*/pycache*
|
*/*/pycache*
|
||||||
venv/
|
venv/
|
||||||
.venv/
|
.venv/
|
||||||
|
.vscode
|
||||||
repositories
|
repositories
|
||||||
|
|
||||||
settings.json
|
settings.json
|
||||||
|
@ -34,7 +34,7 @@ class RWKVModel:
|
|||||||
result.pipeline = pipeline
|
result.pipeline = pipeline
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None):
|
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=None, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None):
|
||||||
args = PIPELINE_ARGS(
|
args = PIPELINE_ARGS(
|
||||||
temperature = temperature,
|
temperature = temperature,
|
||||||
top_p = top_p,
|
top_p = top_p,
|
||||||
|
80
modules/llamacpp_model.py
Normal file
80
modules/llamacpp_model.py
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import llamacpp
|
||||||
|
|
||||||
|
import modules.shared as shared
|
||||||
|
from modules.callbacks import Iteratorize
|
||||||
|
|
||||||
|
|
||||||
|
class LlamaCppTokenizer:
|
||||||
|
"""A thin wrapper over the llamacpp tokenizer"""
|
||||||
|
def __init__(self, model: llamacpp.LlamaInference):
|
||||||
|
self._tokenizer = model.get_tokenizer()
|
||||||
|
self.eos_token_id = 2
|
||||||
|
self.bos_token_id = 0
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_model(cls, model: llamacpp.LlamaInference):
|
||||||
|
return cls(model)
|
||||||
|
|
||||||
|
def encode(self, prompt: str):
|
||||||
|
return self._tokenizer.tokenize(prompt)
|
||||||
|
|
||||||
|
def decode(self, ids):
|
||||||
|
return self._tokenizer.detokenize(ids)
|
||||||
|
|
||||||
|
|
||||||
|
class LlamaCppModel:
|
||||||
|
def __init__(self):
|
||||||
|
self.initialized = False
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pretrained(self, path):
|
||||||
|
params = llamacpp.InferenceParams()
|
||||||
|
params.path_model = str(path)
|
||||||
|
|
||||||
|
_model = llamacpp.LlamaInference(params)
|
||||||
|
|
||||||
|
result = self()
|
||||||
|
result.model = _model
|
||||||
|
result.params = params
|
||||||
|
|
||||||
|
tokenizer = LlamaCppTokenizer.from_model(_model)
|
||||||
|
return result, tokenizer
|
||||||
|
|
||||||
|
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
||||||
|
params = self.params
|
||||||
|
params.n_predict = token_count
|
||||||
|
params.top_p = top_p
|
||||||
|
params.top_k = top_k
|
||||||
|
params.temp = temperature
|
||||||
|
params.repeat_penalty = repetition_penalty
|
||||||
|
#params.repeat_last_n = repeat_last_n
|
||||||
|
|
||||||
|
# model.params = params
|
||||||
|
self.model.add_bos()
|
||||||
|
self.model.update_input(context)
|
||||||
|
|
||||||
|
output = ""
|
||||||
|
is_end_of_text = False
|
||||||
|
ctr = 0
|
||||||
|
while ctr < token_count and not is_end_of_text:
|
||||||
|
if self.model.has_unconsumed_input():
|
||||||
|
self.model.ingest_all_pending_input()
|
||||||
|
else:
|
||||||
|
self.model.eval()
|
||||||
|
token = self.model.sample()
|
||||||
|
text = self.model.token_to_str(token)
|
||||||
|
is_end_of_text = token == self.model.token_eos()
|
||||||
|
if callback:
|
||||||
|
callback(text)
|
||||||
|
ctr += 1
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
def generate_with_streaming(self, **kwargs):
|
||||||
|
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
||||||
|
reply = ''
|
||||||
|
for token in generator:
|
||||||
|
reply += token
|
||||||
|
yield reply
|
@ -42,9 +42,10 @@ def load_model(model_name):
|
|||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
|
||||||
shared.is_RWKV = 'rwkv-' in model_name.lower()
|
shared.is_RWKV = 'rwkv-' in model_name.lower()
|
||||||
|
shared.is_llamacpp = model_name.lower().startswith(('llamacpp', 'alpaca-cpp'))
|
||||||
|
|
||||||
# Default settings
|
# Default settings
|
||||||
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.wbits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
|
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.wbits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV, shared.is_llamacpp]):
|
||||||
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
model = AutoModelForCausalLM.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
||||||
else:
|
else:
|
||||||
@ -100,6 +101,18 @@ def load_model(model_name):
|
|||||||
|
|
||||||
model = load_quantized(model_name)
|
model = load_quantized(model_name)
|
||||||
|
|
||||||
|
# llamacpp model
|
||||||
|
elif shared.is_llamacpp:
|
||||||
|
from modules.llamacpp_model import LlamaCppModel
|
||||||
|
|
||||||
|
if model_name.lower().startswith('alpaca-cpp'):
|
||||||
|
model_file = f'models/{model_name}/ggml-alpaca-7b-q4.bin'
|
||||||
|
else:
|
||||||
|
model_file = f'models/{model_name}/ggml-model-q4_0.bin'
|
||||||
|
|
||||||
|
model, tokenizer = LlamaCppModel.from_pretrained(Path(model_file))
|
||||||
|
return model, tokenizer
|
||||||
|
|
||||||
# Custom
|
# Custom
|
||||||
else:
|
else:
|
||||||
params = {"low_cpu_mem_usage": True}
|
params = {"low_cpu_mem_usage": True}
|
||||||
|
@ -22,7 +22,7 @@ def get_max_prompt_length(tokens):
|
|||||||
return max_length
|
return max_length
|
||||||
|
|
||||||
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
||||||
if shared.is_RWKV:
|
if any((shared.is_RWKV, shared.is_llamacpp)):
|
||||||
input_ids = shared.tokenizer.encode(str(prompt))
|
input_ids = shared.tokenizer.encode(str(prompt))
|
||||||
input_ids = np.array(input_ids).reshape(1, len(input_ids))
|
input_ids = np.array(input_ids).reshape(1, len(input_ids))
|
||||||
return input_ids
|
return input_ids
|
||||||
@ -116,10 +116,10 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||||||
|
|
||||||
# These models are not part of Hugging Face, so we handle them
|
# These models are not part of Hugging Face, so we handle them
|
||||||
# separately and terminate the function call earlier
|
# separately and terminate the function call earlier
|
||||||
if shared.is_RWKV:
|
if any((shared.is_RWKV, shared.is_llamacpp)):
|
||||||
try:
|
try:
|
||||||
if shared.args.no_stream:
|
if shared.args.no_stream:
|
||||||
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
|
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
|
||||||
if not (shared.args.chat or shared.args.cai_chat):
|
if not (shared.args.chat or shared.args.cai_chat):
|
||||||
reply = original_question + apply_extensions(reply, "output")
|
reply = original_question + apply_extensions(reply, "output")
|
||||||
yield formatted_outputs(reply, shared.model_name)
|
yield formatted_outputs(reply, shared.model_name)
|
||||||
|
@ -2,6 +2,7 @@ accelerate==0.18.0
|
|||||||
bitsandbytes==0.37.2
|
bitsandbytes==0.37.2
|
||||||
flexgen==0.1.7
|
flexgen==0.1.7
|
||||||
gradio==3.24.0
|
gradio==3.24.0
|
||||||
|
llamacpp==0.1.11
|
||||||
markdown
|
markdown
|
||||||
numpy
|
numpy
|
||||||
peft==0.2.0
|
peft==0.2.0
|
||||||
|
Loading…
Reference in New Issue
Block a user