mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Remove duplicate max_new_tokens parameter
This commit is contained in:
parent
65326b545a
commit
78ad55641b
@ -24,16 +24,16 @@ def clean_chat_message(text):
|
|||||||
text = text.strip()
|
text = text.strip()
|
||||||
return text
|
return text
|
||||||
|
|
||||||
def generate_chat_prompt(user_input, tokens, name1, name2, context, chat_prompt_size, impersonate=False):
|
def generate_chat_prompt(user_input, max_new_tokens, name1, name2, context, chat_prompt_size, impersonate=False):
|
||||||
user_input = clean_chat_message(user_input)
|
user_input = clean_chat_message(user_input)
|
||||||
rows = [f"{context.strip()}\n"]
|
rows = [f"{context.strip()}\n"]
|
||||||
|
|
||||||
if shared.soft_prompt:
|
if shared.soft_prompt:
|
||||||
chat_prompt_size -= shared.soft_prompt_tensor.shape[1]
|
chat_prompt_size -= shared.soft_prompt_tensor.shape[1]
|
||||||
max_length = min(get_max_prompt_length(tokens), chat_prompt_size)
|
max_length = min(get_max_prompt_length(max_new_tokens), chat_prompt_size)
|
||||||
|
|
||||||
i = len(shared.history['internal'])-1
|
i = len(shared.history['internal'])-1
|
||||||
while i >= 0 and len(encode(''.join(rows), tokens)[0]) < max_length:
|
while i >= 0 and len(encode(''.join(rows), max_new_tokens)[0]) < max_length:
|
||||||
rows.insert(1, f"{name2}: {shared.history['internal'][i][1].strip()}\n")
|
rows.insert(1, f"{name2}: {shared.history['internal'][i][1].strip()}\n")
|
||||||
if not (shared.history['internal'][i][0] == '<|BEGIN-VISIBLE-CHAT|>'):
|
if not (shared.history['internal'][i][0] == '<|BEGIN-VISIBLE-CHAT|>'):
|
||||||
rows.insert(1, f"{name1}: {shared.history['internal'][i][0].strip()}\n")
|
rows.insert(1, f"{name1}: {shared.history['internal'][i][0].strip()}\n")
|
||||||
@ -47,7 +47,7 @@ def generate_chat_prompt(user_input, tokens, name1, name2, context, chat_prompt_
|
|||||||
rows.append(f"{name1}:")
|
rows.append(f"{name1}:")
|
||||||
limit = 2
|
limit = 2
|
||||||
|
|
||||||
while len(rows) > limit and len(encode(''.join(rows), tokens)[0]) >= max_length:
|
while len(rows) > limit and len(encode(''.join(rows), max_new_tokens)[0]) >= max_length:
|
||||||
rows.pop(1)
|
rows.pop(1)
|
||||||
|
|
||||||
prompt = ''.join(rows)
|
prompt = ''.join(rows)
|
||||||
@ -95,7 +95,7 @@ def generate_chat_picture(picture, name1, name2):
|
|||||||
def stop_everything_event():
|
def stop_everything_event():
|
||||||
shared.stop_everything = True
|
shared.stop_everything = True
|
||||||
|
|
||||||
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
||||||
shared.stop_everything = False
|
shared.stop_everything = False
|
||||||
just_started = True
|
just_started = True
|
||||||
eos_token = '\n' if check else None
|
eos_token = '\n' if check else None
|
||||||
@ -110,10 +110,10 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
|
|||||||
if shared.args.chat:
|
if shared.args.chat:
|
||||||
visible_text = visible_text.replace('\n', '<br>')
|
visible_text = visible_text.replace('\n', '<br>')
|
||||||
text = apply_extensions(text, "input")
|
text = apply_extensions(text, "input")
|
||||||
prompt = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size)
|
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size)
|
||||||
|
|
||||||
# Generate
|
# Generate
|
||||||
for reply in generate_reply(prompt, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
for reply in generate_reply(prompt, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
||||||
|
|
||||||
# Extracting the reply
|
# Extracting the reply
|
||||||
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name2, name1, check, extensions=True)
|
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name2, name1, check, extensions=True)
|
||||||
@ -138,15 +138,15 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
|
|||||||
break
|
break
|
||||||
yield shared.history['visible']
|
yield shared.history['visible']
|
||||||
|
|
||||||
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
||||||
eos_token = '\n' if check else None
|
eos_token = '\n' if check else None
|
||||||
|
|
||||||
if 'pygmalion' in shared.model_name.lower():
|
if 'pygmalion' in shared.model_name.lower():
|
||||||
name1 = "You"
|
name1 = "You"
|
||||||
|
|
||||||
prompt = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=True)
|
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size, impersonate=True)
|
||||||
|
|
||||||
for reply in generate_reply(prompt, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
for reply in generate_reply(prompt, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
||||||
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name1, name2, check, extensions=False)
|
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name1, name2, check, extensions=False)
|
||||||
if not substring_found:
|
if not substring_found:
|
||||||
yield reply
|
yield reply
|
||||||
@ -154,11 +154,11 @@ def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, to
|
|||||||
break
|
break
|
||||||
yield reply
|
yield reply
|
||||||
|
|
||||||
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
||||||
for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
for _history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
||||||
yield generate_chat_html(_history, name1, name2, shared.character)
|
yield generate_chat_html(_history, name1, name2, shared.character)
|
||||||
|
|
||||||
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
||||||
if shared.character != 'None' and len(shared.history['visible']) == 1:
|
if shared.character != 'None' and len(shared.history['visible']) == 1:
|
||||||
if shared.args.cai_chat:
|
if shared.args.cai_chat:
|
||||||
yield generate_chat_html(shared.history['visible'], name1, name2, shared.character)
|
yield generate_chat_html(shared.history['visible'], name1, name2, shared.character)
|
||||||
@ -168,7 +168,7 @@ def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top
|
|||||||
last_visible = shared.history['visible'].pop()
|
last_visible = shared.history['visible'].pop()
|
||||||
last_internal = shared.history['internal'].pop()
|
last_internal = shared.history['internal'].pop()
|
||||||
|
|
||||||
for _history in chatbot_wrapper(last_internal[0], tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
||||||
if shared.args.cai_chat:
|
if shared.args.cai_chat:
|
||||||
shared.history['visible'][-1] = [last_visible[0], _history[-1][1]]
|
shared.history['visible'][-1] = [last_visible[0], _history[-1][1]]
|
||||||
yield generate_chat_html(shared.history['visible'], name1, name2, shared.character)
|
yield generate_chat_html(shared.history['visible'], name1, name2, shared.character)
|
||||||
|
@ -72,14 +72,14 @@ def formatted_outputs(reply, model_name):
|
|||||||
else:
|
else:
|
||||||
return reply
|
return reply
|
||||||
|
|
||||||
def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
|
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
|
||||||
original_question = question
|
original_question = question
|
||||||
if not (shared.args.chat or shared.args.cai_chat):
|
if not (shared.args.chat or shared.args.cai_chat):
|
||||||
question = apply_extensions(question, "input")
|
question = apply_extensions(question, "input")
|
||||||
if shared.args.verbose:
|
if shared.args.verbose:
|
||||||
print(f"\n\n{question}\n--------------------\n")
|
print(f"\n\n{question}\n--------------------\n")
|
||||||
|
|
||||||
input_ids = encode(question, tokens)
|
input_ids = encode(question, max_new_tokens)
|
||||||
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
|
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
|
||||||
if not shared.args.flexgen:
|
if not shared.args.flexgen:
|
||||||
n = shared.tokenizer.eos_token_id if eos_token is None else shared.tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
|
n = shared.tokenizer.eos_token_id if eos_token is None else shared.tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
|
||||||
@ -126,7 +126,7 @@ def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top
|
|||||||
if shared.args.deepspeed:
|
if shared.args.deepspeed:
|
||||||
generate_params.append("synced_gpus=True")
|
generate_params.append("synced_gpus=True")
|
||||||
if shared.args.no_stream:
|
if shared.args.no_stream:
|
||||||
generate_params.append("max_new_tokens=tokens")
|
generate_params.append("max_new_tokens=max_new_tokens")
|
||||||
else:
|
else:
|
||||||
generate_params.append("max_new_tokens=8")
|
generate_params.append("max_new_tokens=8")
|
||||||
|
|
||||||
@ -156,7 +156,7 @@ def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top
|
|||||||
# Generate the reply 8 tokens at a time
|
# Generate the reply 8 tokens at a time
|
||||||
else:
|
else:
|
||||||
yield formatted_outputs(original_question, shared.model_name)
|
yield formatted_outputs(original_question, shared.model_name)
|
||||||
for i in tqdm(range(tokens//8+1)):
|
for i in tqdm(range(max_new_tokens//8+1)):
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
||||||
if shared.soft_prompt:
|
if shared.soft_prompt:
|
||||||
|
@ -252,7 +252,7 @@ if shared.args.chat or shared.args.cai_chat:
|
|||||||
with gr.Tab("Extensions"):
|
with gr.Tab("Extensions"):
|
||||||
extensions_module.create_extensions_block()
|
extensions_module.create_extensions_block()
|
||||||
|
|
||||||
input_params = [shared.gradio[i] for i in ['textbox', 'max_new_tokens', 'do_sample', 'max_new_tokens', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider']]
|
input_params = [shared.gradio[i] for i in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider']]
|
||||||
if shared.args.picture:
|
if shared.args.picture:
|
||||||
input_params.append(shared.gradio['picture_select'])
|
input_params.append(shared.gradio['picture_select'])
|
||||||
function_call = "chat.cai_chatbot_wrapper" if shared.args.cai_chat else "chat.chatbot_wrapper"
|
function_call = "chat.cai_chatbot_wrapper" if shared.args.cai_chat else "chat.chatbot_wrapper"
|
||||||
@ -312,7 +312,7 @@ elif shared.args.notebook:
|
|||||||
if shared.args.extensions is not None:
|
if shared.args.extensions is not None:
|
||||||
extensions_module.create_extensions_block()
|
extensions_module.create_extensions_block()
|
||||||
|
|
||||||
input_params = [shared.gradio[k] for k in ('textbox', 'max_new_tokens', 'do_sample', 'max_new_tokens', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping')]
|
input_params = [shared.gradio[k] for k in ('textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping')]
|
||||||
output_params = [shared.gradio[k] for k in ["textbox", "markdown", "html"]]
|
output_params = [shared.gradio[k] for k in ["textbox", "markdown", "html"]]
|
||||||
gen_events.append(shared.gradio["Generate"].click(generate_reply, input_params, output_params, show_progress=shared.args.no_stream, api_name="textgen"))
|
gen_events.append(shared.gradio["Generate"].click(generate_reply, input_params, output_params, show_progress=shared.args.no_stream, api_name="textgen"))
|
||||||
gen_events.append(shared.gradio['textbox'].submit(generate_reply, input_params, output_params, show_progress=shared.args.no_stream))
|
gen_events.append(shared.gradio['textbox'].submit(generate_reply, input_params, output_params, show_progress=shared.args.no_stream))
|
||||||
@ -344,7 +344,7 @@ else:
|
|||||||
with gr.Tab('HTML'):
|
with gr.Tab('HTML'):
|
||||||
shared.gradio['html'] = gr.HTML()
|
shared.gradio['html'] = gr.HTML()
|
||||||
|
|
||||||
input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'max_new_tokens', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
|
input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
|
||||||
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
|
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
|
||||||
gen_events.append(shared.gradio['Generate'].click(generate_reply, input_params, output_params, show_progress=shared.args.no_stream, api_name="textgen"))
|
gen_events.append(shared.gradio['Generate'].click(generate_reply, input_params, output_params, show_progress=shared.args.no_stream, api_name="textgen"))
|
||||||
gen_events.append(shared.gradio['textbox'].submit(generate_reply, input_params, output_params, show_progress=shared.args.no_stream))
|
gen_events.append(shared.gradio['textbox'].submit(generate_reply, input_params, output_params, show_progress=shared.args.no_stream))
|
||||||
|
Loading…
Reference in New Issue
Block a user