mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-23 10:09:20 +01:00
Set chat prompt size in tokens
This commit is contained in:
parent
1622059179
commit
7be372829d
34
server.py
34
server.py
@ -71,9 +71,9 @@ settings = {
|
||||
'prompt': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
|
||||
'prompt_gpt4chan': '-----\n--- 865467536\nInput text\n--- 865467537\n',
|
||||
'stop_at_newline': True,
|
||||
'history_size': 0,
|
||||
'history_size_min': 0,
|
||||
'history_size_max': 64,
|
||||
'chat_prompt_size': 2048,
|
||||
'chat_prompt_size_min': 0,
|
||||
'chat_prompt_size_max': 2048,
|
||||
'preset_pygmalion': 'Pygmalion',
|
||||
'name1_pygmalion': 'You',
|
||||
'name2_pygmalion': 'Kawaii',
|
||||
@ -503,13 +503,13 @@ def clean_chat_message(text):
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
def generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=False):
|
||||
def generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=False):
|
||||
text = clean_chat_message(text)
|
||||
|
||||
rows = [f"{context.strip()}\n"]
|
||||
i = len(history['internal'])-1
|
||||
count = 0
|
||||
max_length = get_max_prompt_length(tokens)
|
||||
max_length = min(get_max_prompt_length(tokens), chat_prompt_size)
|
||||
while i >= 0 and len(encode(''.join(rows), tokens)[0]) < max_length:
|
||||
rows.insert(1, f"{name2}: {history['internal'][i][1].strip()}\n")
|
||||
count += 1
|
||||
@ -517,8 +517,6 @@ def generate_chat_prompt(text, tokens, name1, name2, context, history_size, impe
|
||||
rows.insert(1, f"{name1}: {history['internal'][i][0].strip()}\n")
|
||||
count += 1
|
||||
i -= 1
|
||||
if history_size != 0 and count >= history_size:
|
||||
break
|
||||
|
||||
if not impersonate:
|
||||
rows.append(f"{name1}: {text}\n")
|
||||
@ -566,14 +564,14 @@ def extract_message_from_reply(question, reply, current, other, check, extension
|
||||
|
||||
return reply, next_character_found, substring_found
|
||||
|
||||
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
||||
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
||||
if args.picture and picture is not None:
|
||||
text, visible_text = generate_chat_picture(picture, name1, name2)
|
||||
else:
|
||||
visible_text = text
|
||||
|
||||
text = apply_extensions(text, "input")
|
||||
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
|
||||
question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size)
|
||||
history['internal'].append(['', ''])
|
||||
history['visible'].append(['', ''])
|
||||
eos_token = '\n' if check else None
|
||||
@ -587,8 +585,8 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
|
||||
break
|
||||
yield history['visible']
|
||||
|
||||
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
||||
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
|
||||
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
||||
question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=True)
|
||||
eos_token = '\n' if check else None
|
||||
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
||||
reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name1, name2, check, extensions=False)
|
||||
@ -598,19 +596,19 @@ def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, to
|
||||
break
|
||||
yield apply_extensions(reply, "output")
|
||||
|
||||
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
||||
for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
||||
for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
||||
yield generate_chat_html(_history, name1, name2, character)
|
||||
|
||||
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
||||
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
|
||||
last = history['visible'].pop()
|
||||
history['internal'].pop()
|
||||
text = last[0]
|
||||
if args.cai_chat:
|
||||
for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||
for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
||||
yield i
|
||||
else:
|
||||
for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||
for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture):
|
||||
yield i
|
||||
|
||||
def remove_last_message(name1, name2):
|
||||
@ -886,7 +884,7 @@ if args.chat or args.cai_chat:
|
||||
with gr.Column():
|
||||
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
||||
with gr.Column():
|
||||
history_size_slider = gr.Slider(minimum=settings['history_size_min'], maximum=settings['history_size_max'], step=1, label='Chat history size in prompt (0 for no limit)', value=settings['history_size'])
|
||||
chat_prompt_size_slider = gr.Slider(minimum=settings['chat_prompt_size_min'], maximum=settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=settings['chat_prompt_size'])
|
||||
|
||||
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
|
||||
|
||||
@ -926,7 +924,7 @@ if args.chat or args.cai_chat:
|
||||
if args.extensions is not None:
|
||||
create_extensions_block()
|
||||
|
||||
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider]
|
||||
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size_slider]
|
||||
if args.picture:
|
||||
input_params.append(picture_select)
|
||||
if args.cai_chat:
|
||||
|
@ -9,9 +9,9 @@
|
||||
"prompt": "Common sense questions and answers\n\nQuestion: \nFactual answer:",
|
||||
"prompt_gpt4chan": "-----\n--- 865467536\nInput text\n--- 865467537\n",
|
||||
"stop_at_newline": true,
|
||||
"history_size": 0,
|
||||
"history_size_min": 0,
|
||||
"history_size_max": 64,
|
||||
"chat_prompt_size": 2048,
|
||||
"chat_prompt_size_min": 0,
|
||||
"chat_prompt_size_max": 2048,
|
||||
"preset_pygmalion": "Pygmalion",
|
||||
"name1_pygmalion": "You",
|
||||
"name2_pygmalion": "Kawaii",
|
||||
|
Loading…
Reference in New Issue
Block a user