Refactor superbooga

This commit is contained in:
oobabooga 2023-05-13 14:14:59 -03:00
parent 826c74c201
commit 7cc17e3f1f
2 changed files with 90 additions and 85 deletions

View File

@ -0,0 +1,78 @@
import logging
import posthog
import torch
from sentence_transformers import SentenceTransformer
import chromadb
from chromadb.config import Settings
logging.info('Intercepting all calls to posthog :)')
posthog.capture = lambda *args, **kwargs: None
class Collecter():
def __init__(self):
pass
def add(self, texts: list[str]):
pass
def get(self, search_strings: list[str], n_results: int) -> list[str]:
pass
def clear(self):
pass
class Embedder():
def __init__(self):
pass
def embed(self, text: str) -> list[torch.Tensor]:
pass
class ChromaCollector(Collecter):
def __init__(self, embedder: Embedder):
super().__init__()
self.chroma_client = chromadb.Client(Settings(anonymized_telemetry=False))
self.embedder = embedder
self.collection = self.chroma_client.create_collection(name="context", embedding_function=embedder.embed)
self.ids = []
def add(self, texts: list[str]):
self.ids = [f"id{i}" for i in range(len(texts))]
self.collection.add(documents=texts, ids=self.ids)
def get(self, search_strings: list[str], n_results: int) -> list[str]:
n_results = min(len(self.ids), n_results)
result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents'])['documents'][0]
return result
def get_ids(self, search_strings: list[str], n_results: int) -> list[str]:
n_results = min(len(self.ids), n_results)
result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents'])['ids'][0]
return list(map(lambda x: int(x[2:]), result))
def clear(self):
self.collection.delete(ids=self.ids)
class SentenceTransformerEmbedder(Embedder):
def __init__(self) -> None:
self.model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
self.embed = self.model.encode
def make_collector():
global embedder
return ChromaCollector(embedder)
def add_chunks_to_collector(chunks, collector):
collector.clear()
collector.add(chunks)
embedder = SentenceTransformerEmbedder()

View File

@ -2,22 +2,14 @@ import logging
import re
import textwrap
import chromadb
import gradio as gr
import posthog
import torch
from bs4 import BeautifulSoup
from chromadb.config import Settings
from sentence_transformers import SentenceTransformer
from modules import chat, shared
from .chromadb import add_chunks_to_collector, make_collector
from .download_urls import download_urls
logging.info('Intercepting all calls to posthog :)')
posthog.capture = lambda *args, **kwargs: None
# These parameters are customizable through settings.json
params = {
'chunk_count': 5,
'chunk_length': 700,
@ -25,72 +17,11 @@ params = {
'threads': 4,
}
class Collecter():
def __init__(self):
pass
def add(self, texts: list[str]):
pass
def get(self, search_strings: list[str], n_results: int) -> list[str]:
pass
def clear(self):
pass
class Embedder():
def __init__(self):
pass
def embed(self, text: str) -> list[torch.Tensor]:
pass
class ChromaCollector(Collecter):
def __init__(self, embedder: Embedder):
super().__init__()
self.chroma_client = chromadb.Client(Settings(anonymized_telemetry=False))
self.embedder = embedder
self.collection = self.chroma_client.create_collection(name="context", embedding_function=embedder.embed)
self.ids = []
def add(self, texts: list[str]):
self.ids = [f"id{i}" for i in range(len(texts))]
self.collection.add(documents=texts, ids=self.ids)
def get(self, search_strings: list[str], n_results: int) -> list[str]:
n_results = min(len(self.ids), n_results)
result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents'])['documents'][0]
return result
def get_ids(self, search_strings: list[str], n_results: int) -> list[str]:
n_results = min(len(self.ids), n_results)
result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents'])['ids'][0]
return list(map(lambda x: int(x[2:]), result))
def clear(self):
self.collection.delete(ids=self.ids)
class SentenceTransformerEmbedder(Embedder):
def __init__(self) -> None:
self.model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
self.embed = self.model.encode
embedder = SentenceTransformerEmbedder()
collector = ChromaCollector(embedder)
chat_collector = ChromaCollector(embedder)
collector = make_collector()
chat_collector = make_collector()
chunk_count = 5
def add_chunks_to_collector(chunks, collector):
collector.clear()
collector.add(chunks)
def feed_data_into_collector(corpus, chunk_len):
global collector
@ -150,6 +81,7 @@ def apply_settings(_chunk_count):
settings_to_display = {
'chunk_count': chunk_count,
}
yield f"The following settings are now active: {str(settings_to_display)}"
@ -193,10 +125,8 @@ def custom_generate_chat_prompt(user_input, state, **kwargs):
def remove_special_tokens(string):
for k in ['<|begin-user-input|>', '<|end-user-input|>', '<|injection-point|>']:
string = string.replace(k, '')
return string.strip()
pattern = r'(<\|begin-user-input\|>|<\|end-user-input\|>|<\|injection-point\|>)'
return re.sub(pattern, '', string)
def input_modifier(string):
@ -208,17 +138,14 @@ def input_modifier(string):
match = re.search(pattern, string)
if match:
user_input = match.group(1).strip()
else:
return remove_special_tokens(string)
# Get the most similar chunks
results = collector.get(user_input, n_results=chunk_count)
# Get the most similar chunks
results = collector.get(user_input, n_results=chunk_count)
# Make the replacements
string = string.replace('<|begin-user-input|>', '').replace('<|end-user-input|>', '')
string = string.replace('<|injection-point|>', '\n'.join(results))
# Make the injection
string = string.replace('<|injection-point|>', '\n'.join(results))
return string
return remove_special_tokens(string)
def ui():