Reorganize model loading UI completely (#2720)

This commit is contained in:
oobabooga 2023-06-16 19:00:37 -03:00 committed by GitHub
parent 57be2eecdf
commit 7ef6a50e84
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 365 additions and 243 deletions

1
.gitignore vendored
View File

@ -8,6 +8,7 @@ extensions/multimodal/pipelines
logs logs
loras loras
models models
presets
repositories repositories
softprompts softprompts
torch-dumps torch-dumps

View File

@ -211,6 +211,12 @@ Optionally, you can use the following command-line flags:
| `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. | | `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. |
| `--verbose` | Print the prompts to the terminal. | | `--verbose` | Print the prompts to the terminal. |
#### Model loader
| Flag | Description |
|--------------------------------------------|-------------|
| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: autogptq, gptq-for-llama, transformers, llamacpp, rwkv, flexgen |
#### Accelerate/transformers #### Accelerate/transformers
| Flag | Description | | Flag | Description |
@ -265,7 +271,6 @@ Optionally, you can use the following command-line flags:
| Flag | Description | | Flag | Description |
|---------------------------|-------------| |---------------------------|-------------|
| `--gptq-for-llama` | Use GPTQ-for-LLaMa to load the GPTQ model instead of AutoGPTQ. |
| `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | | `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | | `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. |
| `--groupsize GROUPSIZE` | Group size. | | `--groupsize GROUPSIZE` | Group size. |
@ -280,7 +285,6 @@ Optionally, you can use the following command-line flags:
| Flag | Description | | Flag | Description |
|------------------|-------------| |------------------|-------------|
| `--flexgen` | Enable the use of FlexGen offloading. |
| `--percent PERCENT [PERCENT ...]` | FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0). | | `--percent PERCENT [PERCENT ...]` | FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0). |
| `--compress-weight` | FlexGen: Whether to compress weight (default: False).| | `--compress-weight` | FlexGen: Whether to compress weight (default: False).|
| `--pin-weight [PIN_WEIGHT]` | FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%). | | `--pin-weight [PIN_WEIGHT]` | FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%). |

View File

@ -21,13 +21,13 @@ The output will be saved to `models/opt-1.3b-np/`.
The basic command is the following: The basic command is the following:
``` ```
python server.py --model opt-1.3b --flexgen python server.py --model opt-1.3b --loader flexgen
``` ```
For large models, the RAM usage may be too high and your computer may freeze. If that happens, you can try this: For large models, the RAM usage may be too high and your computer may freeze. If that happens, you can try this:
``` ```
python server.py --model opt-1.3b --flexgen --compress-weight python server.py --model opt-1.3b --loader flexgen --compress-weight
``` ```
With this second command, I was able to run both OPT-6.7b and OPT-13B with **2GB VRAM**, and the speed was good in both cases. With this second command, I was able to run both OPT-6.7b and OPT-13B with **2GB VRAM**, and the speed was good in both cases.
@ -35,7 +35,7 @@ With this second command, I was able to run both OPT-6.7b and OPT-13B with **2GB
You can also manually set the offload strategy with You can also manually set the offload strategy with
``` ```
python server.py --model opt-1.3b --flexgen --percent 0 100 100 0 100 0 python server.py --model opt-1.3b --loader flexgen --percent 0 100 100 0 100 0
``` ```
where the six numbers after `--percent` are: where the six numbers after `--percent` are:
@ -55,8 +55,8 @@ You should typically only change the first two numbers. If their sum is less tha
In my experiments with OPT-30B using a RTX 3090 on Linux, I have obtained these results: In my experiments with OPT-30B using a RTX 3090 on Linux, I have obtained these results:
* `--flexgen --compress-weight --percent 0 100 100 0 100 0`: 0.99 seconds per token. * `--loader flexgen --compress-weight --percent 0 100 100 0 100 0`: 0.99 seconds per token.
* `--flexgen --compress-weight --percent 100 0 100 0 100 0`: 0.765 seconds per token. * `--loader flexgen --compress-weight --percent 100 0 100 0 100 0`: 0.765 seconds per token.
## Limitations ## Limitations

View File

@ -7,10 +7,11 @@ from modules import shared
from modules.chat import generate_chat_reply from modules.chat import generate_chat_reply
from modules.LoRA import add_lora_to_model from modules.LoRA import add_lora_to_model
from modules.models import load_model, unload_model from modules.models import load_model, unload_model
from modules.models_settings import (get_model_settings_from_yamls,
update_model_parameters)
from modules.text_generation import (encode, generate_reply, from modules.text_generation import (encode, generate_reply,
stop_everything_event) stop_everything_event)
from modules.utils import get_available_models from modules.utils import get_available_models
from server import get_model_specific_settings, update_model_parameters
def get_model_info(): def get_model_info():
@ -22,6 +23,7 @@ def get_model_info():
'shared.args': vars(shared.args), 'shared.args': vars(shared.args),
} }
class Handler(BaseHTTPRequestHandler): class Handler(BaseHTTPRequestHandler):
def do_GET(self): def do_GET(self):
if self.path == '/api/v1/model': if self.path == '/api/v1/model':
@ -126,7 +128,7 @@ class Handler(BaseHTTPRequestHandler):
shared.model_name = model_name shared.model_name = model_name
unload_model() unload_model()
model_settings = get_model_specific_settings(shared.model_name) model_settings = get_model_settings_from_yamls(shared.model_name)
shared.settings.update(model_settings) shared.settings.update(model_settings)
update_model_parameters(model_settings, initial=True) update_model_parameters(model_settings, initial=True)
@ -136,10 +138,10 @@ class Handler(BaseHTTPRequestHandler):
try: try:
shared.model, shared.tokenizer = load_model(shared.model_name) shared.model, shared.tokenizer = load_model(shared.model_name)
if shared.args.lora: if shared.args.lora:
add_lora_to_model(shared.args.lora) # list add_lora_to_model(shared.args.lora) # list
except Exception as e: except Exception as e:
response = json.dumps({'error': { 'message': repr(e) } }) response = json.dumps({'error': {'message': repr(e)}})
self.wfile.write(response.encode('utf-8')) self.wfile.write(response.encode('utf-8'))
raise e raise e

View File

@ -77,8 +77,7 @@ def add_lora_to_model(lora_names):
elif shared.args.load_in_8bit: elif shared.args.load_in_8bit:
params['device_map'] = {'': 0} params['device_map'] = {'': 0}
shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"),adapter_name=lora_names[0], **params) shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"), adapter_name=lora_names[0], **params)
for lora in lora_names[1:]: for lora in lora_names[1:]:
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora) shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)

View File

@ -88,8 +88,8 @@ class RWKVModel:
out, state = self.model.forward(tokens[:args.chunk_len], state) out, state = self.model.forward(tokens[:args.chunk_len], state)
tokens = tokens[args.chunk_len:] tokens = tokens[args.chunk_len:]
if i == 0: if i == 0:
begin_token= len(all_tokens) begin_token = len(all_tokens)
last_token_posi=begin_token last_token_posi = begin_token
# cache the model state after scanning the context # cache the model state after scanning the context
# we don't cache the state after processing our own generated tokens because # we don't cache the state after processing our own generated tokens because
# the output string might be post-processed arbitrarily. Therefore, what's fed into the model # the output string might be post-processed arbitrarily. Therefore, what's fed into the model

View File

@ -8,8 +8,9 @@ from tqdm import tqdm
from modules import shared from modules import shared
from modules.models import load_model, unload_model from modules.models import load_model, unload_model
from modules.models_settings import (get_model_settings_from_yamls,
update_model_parameters)
from modules.text_generation import encode from modules.text_generation import encode
from server import get_model_specific_settings, update_model_parameters
def load_past_evaluations(): def load_past_evaluations():
@ -66,7 +67,7 @@ def calculate_perplexity(models, input_dataset, stride, _max_length):
if model != 'current model': if model != 'current model':
try: try:
yield cumulative_log + f"Loading {model}...\n\n" yield cumulative_log + f"Loading {model}...\n\n"
model_settings = get_model_specific_settings(model) model_settings = get_model_settings_from_yamls(model)
shared.settings.update(model_settings) # hijacking the interface defaults shared.settings.update(model_settings) # hijacking the interface defaults
update_model_parameters(model_settings) # hijacking the command-line arguments update_model_parameters(model_settings) # hijacking the command-line arguments
shared.model_name = model shared.model_name = model

View File

@ -1,6 +1,7 @@
import os import os
import subprocess import subprocess
def clone_or_pull_repository(github_url): def clone_or_pull_repository(github_url):
repository_folder = "extensions" repository_folder = "extensions"
repo_name = github_url.split("/")[-1].split(".")[0] repo_name = github_url.split("/")[-1].split(".")[0]

86
modules/loaders.py Normal file
View File

@ -0,0 +1,86 @@
import functools
import gradio as gr
from modules import shared
loaders_and_params = {
'AutoGPTQ': [
'triton',
'no_inject_fused_attention',
'no_inject_fused_mlp',
'wbits',
'groupsize',
'desc_act',
'gpu_memory',
'cpu_memory',
'cpu',
'disk',
'auto_devices',
'trust_remote_code',
'autogptq_info',
],
'GPTQ-for-LLaMa': [
'wbits',
'groupsize',
'model_type',
'pre_layer',
'gptq_for_llama_info',
],
'llama.cpp': [
'n_ctx',
'n_gpu_layers',
'n_batch',
'threads',
'no_mmap',
'mlock',
'llama_cpp_seed',
],
'Transformers': [
'cpu_memory',
'gpu_memory',
'trust_remote_code',
'load_in_8bit',
'bf16',
'cpu',
'disk',
'auto_devices',
'load_in_4bit',
'use_double_quant',
'quant_type',
'compute_dtype',
'trust_remote_code',
],
}
def get_gpu_memory_keys():
return [k for k in shared.gradio if k.startswith('gpu_memory')]
@functools.cache
def get_all_params():
all_params = set()
for k in loaders_and_params:
for el in loaders_and_params[k]:
all_params.add(el)
if 'gpu_memory' in all_params:
all_params.remove('gpu_memory')
for k in get_gpu_memory_keys():
all_params.add(k)
return sorted(all_params)
def make_loader_params_visible(loader):
params = []
all_params = get_all_params()
if loader in loaders_and_params:
params = loaders_and_params[loader]
if 'gpu_memory' in params:
params.remove('gpu_memory')
params += get_gpu_memory_keys()
return [gr.update(visible=True) if k in params else gr.update(visible=False) for k in all_params]

View File

@ -14,6 +14,7 @@ from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
import modules.shared as shared import modules.shared as shared
from modules import llama_attn_hijack, sampler_hijack from modules import llama_attn_hijack, sampler_hijack
from modules.logging_colors import logger from modules.logging_colors import logger
from modules.models_settings import infer_loader
transformers.logging.set_verbosity_error() transformers.logging.set_verbosity_error()
@ -36,62 +37,31 @@ if shared.args.deepspeed:
sampler_hijack.hijack_samplers() sampler_hijack.hijack_samplers()
# Some models require special treatment in various parts of the code. def load_model(model_name, loader=None):
# This function detects those models
def find_model_type(model_name):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
if not path_to_model.exists():
return 'None'
model_name_lower = model_name.lower()
if re.match('.*rwkv.*\.pth', model_name_lower):
return 'rwkv'
elif len(list(path_to_model.glob('*ggml*.bin'))) > 0:
return 'llamacpp'
elif re.match('.*ggml.*\.bin', model_name_lower):
return 'llamacpp'
elif 'chatglm' in model_name_lower:
return 'chatglm'
elif 'galactica' in model_name_lower:
return 'galactica'
elif 'llava' in model_name_lower:
return 'llava'
elif 'oasst' in model_name_lower:
return 'oasst'
elif any((k in model_name_lower for k in ['gpt4chan', 'gpt-4chan'])):
return 'gpt4chan'
else:
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
# Not a "catch all", but fairly accurate
if config.to_dict().get("is_encoder_decoder", False):
return 'HF_seq2seq'
else:
return 'HF_generic'
def load_model(model_name):
logger.info(f"Loading {model_name}...") logger.info(f"Loading {model_name}...")
t0 = time.time() t0 = time.time()
shared.model_type = find_model_type(model_name) shared.is_seq2seq = False
if shared.model_type == 'None': load_func_map = {
logger.error('The path to the model does not exist. Exiting.') 'Transformers': huggingface_loader,
return None, None 'AutoGPTQ': AutoGPTQ_loader,
'GPTQ-for-LLaMa': GPTQ_loader,
'llama.cpp': llamacpp_loader,
'FlexGen': flexgen_loader,
'RWKV': RWKV_loader
}
if shared.args.gptq_for_llama: if loader is None:
load_func = GPTQ_loader if shared.args.loader is not None:
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or shared.args.wbits > 0: loader = shared.args.loader
load_func = AutoGPTQ_loader else:
elif shared.model_type == 'llamacpp': loader = infer_loader(model_name)
load_func = llamacpp_loader if loader is None:
elif shared.model_type == 'rwkv': logger.error('The path to the model does not exist. Exiting.')
load_func = RWKV_loader return None, None
elif shared.args.flexgen:
load_func = flexgen_loader
else:
load_func = huggingface_loader
output = load_func(model_name) shared.args.loader = loader
output = load_func_map[loader](model_name)
if type(output) is tuple: if type(output) is tuple:
model, tokenizer = output model, tokenizer = output
else: else:
@ -111,11 +81,11 @@ def load_model(model_name):
def load_tokenizer(model_name, model): def load_tokenizer(model_name, model):
tokenizer = None tokenizer = None
if shared.model_type == 'gpt4chan' and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists(): if any(s in model_name.lower() for s in ['gpt-4chan', 'gpt4chan']) and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists():
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/")) tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/"))
elif type(model) is transformers.LlamaForCausalLM or "LlamaGPTQForCausalLM" in str(type(model)): elif type(model) is transformers.LlamaForCausalLM or "LlamaGPTQForCausalLM" in str(type(model)):
# Try to load an universal LLaMA tokenizer # Try to load an universal LLaMA tokenizer
if shared.model_type not in ['llava', 'oasst']: if any(s in shared.model_name.lower() for s in ['llava', 'oasst']):
for p in [Path(f"{shared.args.model_dir}/llama-tokenizer/"), Path(f"{shared.args.model_dir}/oobabooga_llama-tokenizer/")]: for p in [Path(f"{shared.args.model_dir}/llama-tokenizer/"), Path(f"{shared.args.model_dir}/oobabooga_llama-tokenizer/")]:
if p.exists(): if p.exists():
logger.info(f"Loading the universal LLaMA tokenizer from {p}...") logger.info(f"Loading the universal LLaMA tokenizer from {p}...")
@ -140,12 +110,16 @@ def load_tokenizer(model_name, model):
def huggingface_loader(model_name): def huggingface_loader(model_name):
if shared.model_type == 'chatglm': path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
if 'chatglm' in model_name.lower():
LoaderClass = AutoModel LoaderClass = AutoModel
elif shared.model_type == 'HF_seq2seq':
LoaderClass = AutoModelForSeq2SeqLM
else: else:
LoaderClass = AutoModelForCausalLM config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
if config.to_dict().get("is_encoder_decoder", False):
LoaderClass = AutoModelForSeq2SeqLM
shared.is_seq2seq = True
else:
LoaderClass = AutoModelForCausalLM
# Load the model in simple 16-bit mode by default # Load the model in simple 16-bit mode by default
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None]): if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None]):

134
modules/models_settings.py Normal file
View File

@ -0,0 +1,134 @@
import re
from pathlib import Path
import yaml
from modules import shared, ui
def get_model_settings_from_yamls(model):
settings = shared.model_config
model_settings = {}
for pat in settings:
if re.match(pat.lower(), model.lower()):
for k in settings[pat]:
model_settings[k] = settings[pat][k]
return model_settings
def infer_loader(model_name):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
model_settings = get_model_settings_from_yamls(model_name)
if not path_to_model.exists():
loader = None
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
loader = 'AutoGPTQ'
elif len(list(path_to_model.glob('*ggml*.bin'))) > 0:
loader = 'llama.cpp'
elif re.match('.*ggml.*\.bin', model_name.lower()):
loader = 'llama.cpp'
elif re.match('.*rwkv.*\.pth', model_name.lower()):
loader = 'RWKV'
elif shared.args.flexgen:
loader = 'FlexGen'
else:
loader = 'Transformers'
return loader
# UI: update the command-line arguments based on the interface values
def update_model_parameters(state, initial=False):
elements = ui.list_model_elements() # the names of the parameters
gpu_memories = []
for i, element in enumerate(elements):
if element not in state:
continue
value = state[element]
if element.startswith('gpu_memory'):
gpu_memories.append(value)
continue
if initial and vars(shared.args)[element] != vars(shared.args_defaults)[element]:
continue
# Setting null defaults
if element in ['wbits', 'groupsize', 'model_type'] and value == 'None':
value = vars(shared.args_defaults)[element]
elif element in ['cpu_memory'] and value == 0:
value = vars(shared.args_defaults)[element]
# Making some simple conversions
if element in ['wbits', 'groupsize', 'pre_layer']:
value = int(value)
elif element == 'cpu_memory' and value is not None:
value = f"{value}MiB"
if element in ['pre_layer']:
value = [value] if value > 0 else None
setattr(shared.args, element, value)
found_positive = False
for i in gpu_memories:
if i > 0:
found_positive = True
break
if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']):
if found_positive:
shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories]
else:
shared.args.gpu_memory = None
# UI: update the state variable with the model settings
def apply_model_settings_to_state(model, state):
model_settings = get_model_settings_from_yamls(model)
if 'loader' not in model_settings:
loader = infer_loader(model)
if 'wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0:
loader = 'AutoGPTQ'
# If the user is using an alternative GPTQ loader, let them keep using it
if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'exllama']):
state['loader'] = loader
for k in model_settings:
if k in state:
state[k] = model_settings[k]
return state
# Save the settings for this model to models/config-user.yaml
def save_model_settings(model, state):
if model == 'None':
yield ("Not saving the settings because no model is loaded.")
return
with Path(f'{shared.args.model_dir}/config-user.yaml') as p:
if p.exists():
user_config = yaml.safe_load(open(p, 'r').read())
else:
user_config = {}
model_regex = model + '$' # For exact matches
for _dict in [user_config, shared.model_config]:
if model_regex not in _dict:
_dict[model_regex] = {}
if model_regex not in user_config:
user_config[model_regex] = {}
for k in ui.list_model_elements():
user_config[model_regex][k] = state[k]
shared.model_config[model_regex][k] = state[k]
with open(p, 'w') as f:
f.write(yaml.dump(user_config, sort_keys=False))
yield (f"Settings for {model} saved to {p}")

View File

@ -52,4 +52,3 @@ def load_preset_for_ui(name, state):
def generate_preset_yaml(state): def generate_preset_yaml(state):
data = {k: state[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']} data = {k: state[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']}
return yaml.dump(data, sort_keys=False) return yaml.dump(data, sort_keys=False)

View File

@ -10,7 +10,6 @@ generation_lock = None
model = None model = None
tokenizer = None tokenizer = None
model_name = "None" model_name = "None"
model_type = None
lora_names = [] lora_names = []
# Chat variables # Chat variables
@ -97,6 +96,9 @@ parser.add_argument('--settings', type=str, help='Load the default interface set
parser.add_argument('--extensions', type=str, nargs="+", help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.') parser.add_argument('--extensions', type=str, nargs="+", help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.') parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
# Model loader
parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: autogptq, gptq-for-llama, transformers, llamacpp, rwkv, flexgen')
# Accelerate/transformers # Accelerate/transformers
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.') parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.') parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
@ -139,7 +141,7 @@ parser.add_argument('--warmup_autotune', action='store_true', help='(triton) Ena
parser.add_argument('--fused_mlp', action='store_true', help='(triton) Enable fused mlp.') parser.add_argument('--fused_mlp', action='store_true', help='(triton) Enable fused mlp.')
# AutoGPTQ # AutoGPTQ
parser.add_argument('--gptq-for-llama', action='store_true', help='Use GPTQ-for-LLaMa to load the GPTQ model instead of AutoGPTQ.') parser.add_argument('--gptq-for-llama', action='store_true', help='DEPRECATED')
parser.add_argument('--autogptq', action='store_true', help='DEPRECATED') parser.add_argument('--autogptq', action='store_true', help='DEPRECATED')
parser.add_argument('--triton', action='store_true', help='Use triton.') parser.add_argument('--triton', action='store_true', help='Use triton.')
parser.add_argument('--no_inject_fused_attention', action='store_true', help='Do not use fused attention (lowers VRAM requirements).') parser.add_argument('--no_inject_fused_attention', action='store_true', help='Do not use fused attention (lowers VRAM requirements).')
@ -147,7 +149,7 @@ parser.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton m
parser.add_argument('--desc_act', action='store_true', help='For models that don\'t have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.') parser.add_argument('--desc_act', action='store_true', help='For models that don\'t have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.')
# FlexGen # FlexGen
parser.add_argument('--flexgen', action='store_true', help='Enable the use of FlexGen offloading.') parser.add_argument('--flexgen', action='store_true', help='DEPRECATED')
parser.add_argument('--percent', type=int, nargs="+", default=[0, 100, 100, 0, 100, 0], help='FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0).') parser.add_argument('--percent', type=int, nargs="+", default=[0, 100, 100, 0, 100, 0], help='FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0).')
parser.add_argument("--compress-weight", action="store_true", help="FlexGen: activate weight compression.") parser.add_argument("--compress-weight", action="store_true", help="FlexGen: activate weight compression.")
parser.add_argument("--pin-weight", type=str2bool, nargs="?", const=True, default=True, help="FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%%).") parser.add_argument("--pin-weight", type=str2bool, nargs="?", const=True, default=True, help="FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%%).")
@ -184,7 +186,14 @@ args_defaults = parser.parse_args([])
# Deprecation warnings # Deprecation warnings
if args.autogptq: if args.autogptq:
logger.warning('--autogptq has been deprecated and will be removed soon. AutoGPTQ is now used by default for GPTQ models.') logger.warning('--autogptq has been deprecated and will be removed soon. Use --loader autogptq instead.')
args.loader = 'autogptq'
if args.gptq_for_llama:
logger.warning('--gptq-for-llama has been deprecated and will be removed soon. Use --loader gptq-for-llama instead.')
args.loader = 'gptq-for-llama'
if args.flexgen:
logger.warning('--flexgen has been deprecated and will be removed soon. Use --loader flexgen instead.')
args.loader = 'FlexGen'
# Security warnings # Security warnings
if args.trust_remote_code: if args.trust_remote_code:
@ -193,6 +202,22 @@ if args.share:
logger.warning("The gradio \"share link\" feature uses a proprietary executable to create a reverse tunnel. Use it with care.") logger.warning("The gradio \"share link\" feature uses a proprietary executable to create a reverse tunnel. Use it with care.")
def fix_loader_name(name):
name = name.lower()
if name in ['llamacpp', 'llama.cpp', 'llama-cpp', 'llama cpp']:
return 'llama.cpp'
elif name in ['transformers', 'huggingface', 'hf', 'hugging_face', 'hugging face']:
return 'Transformers'
elif name in ['autogptq', 'auto-gptq', 'auto_gptq', 'auto gptq']:
return 'AutoGPTQ'
elif name in ['gptq-for-llama', 'gptqforllama', 'gptqllama', 'gptq for llama', 'gptq_for_llama']:
return 'GPTQ-for-LLaMa'
if args.loader is not None:
args.loader = fix_loader_name(args.loader)
def add_extension(name): def add_extension(name):
if args.extensions is None: if args.extensions is None:
args.extensions = [name] args.extensions = [name]

View File

@ -31,7 +31,7 @@ def get_max_prompt_length(state):
def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None): def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
if shared.model_type in ['rwkv', 'llamacpp']: if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel']:
input_ids = shared.tokenizer.encode(str(prompt)) input_ids = shared.tokenizer.encode(str(prompt))
input_ids = np.array(input_ids).reshape(1, len(input_ids)) input_ids = np.array(input_ids).reshape(1, len(input_ids))
return input_ids return input_ids
@ -51,7 +51,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
if truncation_length is not None: if truncation_length is not None:
input_ids = input_ids[:, -truncation_length:] input_ids = input_ids[:, -truncation_length:]
if shared.model_type in ['rwkv', 'llamacpp'] or shared.args.cpu: if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel'] or shared.args.cpu:
return input_ids return input_ids
elif shared.args.flexgen: elif shared.args.flexgen:
return input_ids.numpy() return input_ids.numpy()
@ -99,7 +99,7 @@ def fix_galactica(s):
def get_reply_from_output_ids(output_ids, input_ids, original_question, state, is_chat=False): def get_reply_from_output_ids(output_ids, input_ids, original_question, state, is_chat=False):
if shared.model_type == 'HF_seq2seq': if shared.is_seq2seq:
reply = decode(output_ids, state['skip_special_tokens']) reply = decode(output_ids, state['skip_special_tokens'])
else: else:
new_tokens = len(output_ids) - len(input_ids[0]) new_tokens = len(output_ids) - len(input_ids[0])
@ -117,7 +117,7 @@ def get_reply_from_output_ids(output_ids, input_ids, original_question, state, i
def formatted_outputs(reply, model_name): def formatted_outputs(reply, model_name):
if shared.model_type == 'gpt4chan': if any(s in model_name for s in ['gpt-4chan', 'gpt4chan']):
reply = fix_gpt4chan(reply) reply = fix_gpt4chan(reply)
return reply, generate_4chan_html(reply) return reply, generate_4chan_html(reply)
else: else:
@ -142,7 +142,7 @@ def stop_everything_event():
def generate_reply_wrapper(question, state, eos_token=None, stopping_strings=None): def generate_reply_wrapper(question, state, eos_token=None, stopping_strings=None):
for reply in generate_reply(question, state, eos_token, stopping_strings, is_chat=False): for reply in generate_reply(question, state, eos_token, stopping_strings, is_chat=False):
if shared.model_type not in ['HF_seq2seq']: if not shared.is_seq2seq:
reply = question + reply reply = question + reply
yield formatted_outputs(reply, shared.model_name) yield formatted_outputs(reply, shared.model_name)
@ -157,7 +157,7 @@ def _generate_reply(question, state, eos_token=None, stopping_strings=None, is_c
yield '' yield ''
return return
if shared.model_type in ['rwkv', 'llamacpp']: if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel']:
generate_func = generate_reply_custom generate_func = generate_reply_custom
elif shared.args.flexgen: elif shared.args.flexgen:
generate_func = generate_reply_flexgen generate_func = generate_reply_flexgen
@ -240,7 +240,7 @@ def generate_reply_HF(question, original_question, seed, state, eos_token=None,
t0 = time.time() t0 = time.time()
try: try:
if not is_chat and shared.model_type != 'HF_seq2seq': if not is_chat and not shared.is_seq2seq:
yield '' yield ''
# Generate the entire reply at once. # Generate the entire reply at once.
@ -276,7 +276,7 @@ def generate_reply_HF(question, original_question, seed, state, eos_token=None,
finally: finally:
t1 = time.time() t1 = time.time()
original_tokens = len(original_input_ids[0]) original_tokens = len(original_input_ids[0])
new_tokens = len(output) - (original_tokens if shared.model_type != 'HF_seq2seq' else 0) new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0)
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
return return
@ -287,7 +287,7 @@ def generate_reply_custom(question, original_question, seed, state, eos_token=No
for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']: for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']:
generate_params[k] = state[k] generate_params[k] = state[k]
if shared.model_type == 'llamacpp': if shared.model.__class__.__name__ in ['LlamaCppModel']:
for k in ['mirostat_mode', 'mirostat_tau', 'mirostat_eta']: for k in ['mirostat_mode', 'mirostat_tau', 'mirostat_eta']:
generate_params[k] = state[k] generate_params[k] = state[k]
@ -381,6 +381,6 @@ def generate_reply_flexgen(question, original_question, seed, state, eos_token=N
finally: finally:
t1 = time.time() t1 = time.time()
original_tokens = len(original_input_ids[0]) original_tokens = len(original_input_ids[0])
new_tokens = len(output) - (original_tokens if shared.model_type != 'HF_seq2seq' else 0) new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0)
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
return return

View File

@ -30,7 +30,7 @@ theme = gr.themes.Default(
def list_model_elements(): def list_model_elements():
elements = ['cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'gptq_for_llama', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'triton', 'desc_act', 'no_inject_fused_attention', 'no_inject_fused_mlp', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed'] elements = ['loader', 'cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'triton', 'desc_act', 'no_inject_fused_attention', 'no_inject_fused_mlp', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed']
for i in range(torch.cuda.device_count()): for i in range(torch.cuda.device_count()):
elements.append(f'gpu_memory_{i}') elements.append(f'gpu_memory_{i}')

200
server.py
View File

@ -43,17 +43,21 @@ import yaml
from PIL import Image from PIL import Image
import modules.extensions as extensions_module import modules.extensions as extensions_module
from modules import chat, presets, shared, training, ui, utils from modules import chat, loaders, presets, shared, training, ui, utils
from modules.extensions import apply_extensions from modules.extensions import apply_extensions
from modules.github import clone_or_pull_repository from modules.github import clone_or_pull_repository
from modules.html_generator import chat_html_wrapper from modules.html_generator import chat_html_wrapper
from modules.LoRA import add_lora_to_model from modules.LoRA import add_lora_to_model
from modules.models import load_model, unload_model from modules.models import load_model, unload_model
from modules.models_settings import (apply_model_settings_to_state,
get_model_settings_from_yamls,
save_model_settings,
update_model_parameters)
from modules.text_generation import (generate_reply_wrapper, from modules.text_generation import (generate_reply_wrapper,
get_encoded_length, stop_everything_event) get_encoded_length, stop_everything_event)
def load_model_wrapper(selected_model, autoload=False): def load_model_wrapper(selected_model, loader, autoload=False):
if not autoload: if not autoload:
yield f"The settings for {selected_model} have been updated.\nClick on \"Load the model\" to load it." yield f"The settings for {selected_model} have been updated.\nClick on \"Load the model\" to load it."
return return
@ -66,9 +70,12 @@ def load_model_wrapper(selected_model, autoload=False):
shared.model_name = selected_model shared.model_name = selected_model
unload_model() unload_model()
if selected_model != '': if selected_model != '':
shared.model, shared.tokenizer = load_model(shared.model_name) shared.model, shared.tokenizer = load_model(shared.model_name, loader)
yield f"Successfully loaded {selected_model}" if shared.model is not None:
yield f"Successfully loaded {selected_model}"
else:
yield f"Failed to load {selected_model}."
except: except:
yield traceback.format_exc() yield traceback.format_exc()
@ -144,103 +151,6 @@ def download_model_wrapper(repo_id):
yield traceback.format_exc() yield traceback.format_exc()
# Update the command-line arguments based on the interface values
def update_model_parameters(state, initial=False):
elements = ui.list_model_elements() # the names of the parameters
gpu_memories = []
for i, element in enumerate(elements):
if element not in state:
continue
value = state[element]
if element.startswith('gpu_memory'):
gpu_memories.append(value)
continue
if initial and vars(shared.args)[element] != vars(shared.args_defaults)[element]:
continue
# Setting null defaults
if element in ['wbits', 'groupsize', 'model_type'] and value == 'None':
value = vars(shared.args_defaults)[element]
elif element in ['cpu_memory'] and value == 0:
value = vars(shared.args_defaults)[element]
# Making some simple conversions
if element in ['wbits', 'groupsize', 'pre_layer']:
value = int(value)
elif element == 'cpu_memory' and value is not None:
value = f"{value}MiB"
if element in ['pre_layer']:
value = [value] if value > 0 else None
setattr(shared.args, element, value)
found_positive = False
for i in gpu_memories:
if i > 0:
found_positive = True
break
if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']):
if found_positive:
shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories]
else:
shared.args.gpu_memory = None
def get_model_specific_settings(model):
settings = shared.model_config
model_settings = {}
for pat in settings:
if re.match(pat.lower(), model.lower()):
for k in settings[pat]:
model_settings[k] = settings[pat][k]
return model_settings
def load_model_specific_settings(model, state):
model_settings = get_model_specific_settings(model)
for k in model_settings:
if k in state:
state[k] = model_settings[k]
return state
def save_model_settings(model, state):
if model == 'None':
yield ("Not saving the settings because no model is loaded.")
return
with Path(f'{shared.args.model_dir}/config-user.yaml') as p:
if p.exists():
user_config = yaml.safe_load(open(p, 'r').read())
else:
user_config = {}
model_regex = model + '$' # For exact matches
for _dict in [user_config, shared.model_config]:
if model_regex not in _dict:
_dict[model_regex] = {}
if model_regex not in user_config:
user_config[model_regex] = {}
for k in ui.list_model_elements():
user_config[model_regex][k] = state[k]
shared.model_config[model_regex][k] = state[k]
with open(p, 'w') as f:
f.write(yaml.dump(user_config, sort_keys=False))
yield (f"Settings for {model} saved to {p}")
def create_model_menus(): def create_model_menus():
# Finding the default values for the GPU and CPU memories # Finding the default values for the GPU and CPU memories
total_mem = [] total_mem = []
@ -283,88 +193,70 @@ def create_model_menus():
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "AutoGPTQ", "GPTQ-for-LLaMa", "llama.cpp"], value=None)
with gr.Box(): with gr.Box():
gr.Markdown('Transformers')
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
for i in range(len(total_mem)): for i in range(len(total_mem)):
shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i]) shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])
shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem) shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
with gr.Column():
shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu)
shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
with gr.Box():
gr.Markdown('Transformers 4-bit')
with gr.Row():
with gr.Column():
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
with gr.Column():
shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype) shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype)
shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type) shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type)
shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.')
shared.gradio['custom_model_menu'] = gr.Textbox(label="Download custom model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main")
shared.gradio['download_model_button'] = gr.Button("Download")
with gr.Column():
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown('GPTQ')
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
shared.gradio['no_inject_fused_attention'] = gr.Checkbox(label="no_inject_fused_attention", value=shared.args.no_inject_fused_attention, info='Disable fused attention. Fused attention improves inference performance but uses more VRAM. Disable if running low on VRAM.')
shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", value=shared.args.no_inject_fused_mlp, info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.')
shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
shared.gradio['gptq_for_llama'] = gr.Checkbox(label="gptq-for-llama", value=shared.args.gptq_for_llama, info='Use GPTQ-for-LLaMa loader instead of AutoGPTQ. pre_layer should be used for CPU offloading instead of gpu-memory.')
with gr.Column():
with gr.Row():
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None")
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
with gr.Box():
gr.Markdown('llama.cpp')
with gr.Row():
with gr.Column():
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads) shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch) shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers) shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers)
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=8192, step=1, label="n_ctx", value=shared.args.n_ctx) shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=8192, step=1, label="n_ctx", value=shared.args.n_ctx)
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None")
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
shared.gradio['autogptq_info'] = gr.Markdown('On some systems, AutoGPTQ can be 2x slower than GPTQ-for-LLaMa. You can manually select the GPTQ-for-LLaMa loader above.')
with gr.Column(): with gr.Column():
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
shared.gradio['no_inject_fused_attention'] = gr.Checkbox(label="no_inject_fused_attention", value=shared.args.no_inject_fused_attention, info='Disable fused attention. Fused attention improves inference performance but uses more VRAM. Disable if running low on VRAM.')
shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", value=shared.args.no_inject_fused_mlp, info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.')
shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu)
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit")
shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap) shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock) shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed) shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
with gr.Column():
with gr.Row():
shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.')
shared.gradio['custom_model_menu'] = gr.Textbox(label="Download custom model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main")
shared.gradio['download_model_button'] = gr.Button("Download")
with gr.Row(): with gr.Row():
shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready') shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready')
shared.gradio['loader'].change(loaders.make_loader_params_visible, shared.gradio['loader'], [shared.gradio[k] for k in loaders.get_all_params()])
# In this event handler, the interface state is read and updated # In this event handler, the interface state is read and updated
# with the model defaults (if any), and then the model is loaded # with the model defaults (if any), and then the model is loaded
# unless "autoload_model" is unchecked # unless "autoload_model" is unchecked
shared.gradio['model_menu'].change( shared.gradio['model_menu'].change(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then( ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
load_model_specific_settings, [shared.gradio[k] for k in ['model_menu', 'interface_state']], shared.gradio['interface_state']).then( apply_model_settings_to_state, [shared.gradio[k] for k in ['model_menu', 'interface_state']], shared.gradio['interface_state']).then(
ui.apply_interface_values, shared.gradio['interface_state'], [shared.gradio[k] for k in ui.list_interface_input_elements(chat=shared.is_chat())], show_progress=False).then( ui.apply_interface_values, shared.gradio['interface_state'], [shared.gradio[k] for k in ui.list_interface_input_elements(chat=shared.is_chat())], show_progress=False).then(
update_model_parameters, shared.gradio['interface_state'], None).then( update_model_parameters, shared.gradio['interface_state'], None).then(
load_model_wrapper, [shared.gradio[k] for k in ['model_menu', 'autoload_model']], shared.gradio['model_status'], show_progress=False) load_model_wrapper, [shared.gradio[k] for k in ['model_menu', 'loader', 'autoload_model']], shared.gradio['model_status'], show_progress=False)
load.click( load.click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then( ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
update_model_parameters, shared.gradio['interface_state'], None).then( update_model_parameters, shared.gradio['interface_state'], None).then(
partial(load_model_wrapper, autoload=True), shared.gradio['model_menu'], shared.gradio['model_status'], show_progress=False) partial(load_model_wrapper, autoload=True), [shared.gradio[k] for k in ['model_menu', 'loader']], shared.gradio['model_status'], show_progress=False)
unload.click( unload.click(
unload_model, None, None).then( unload_model, None, None).then(
@ -374,7 +266,7 @@ def create_model_menus():
unload_model, None, None).then( unload_model, None, None).then(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then( ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
update_model_parameters, shared.gradio['interface_state'], None).then( update_model_parameters, shared.gradio['interface_state'], None).then(
partial(load_model_wrapper, autoload=True), shared.gradio['model_menu'], shared.gradio['model_status'], show_progress=False) partial(load_model_wrapper, autoload=True), [shared.gradio[k] for k in ['model_menu', 'loader']], shared.gradio['model_status'], show_progress=False)
save_settings.click( save_settings.click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then( ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
@ -1100,7 +992,7 @@ if __name__ == "__main__":
# If any model has been selected, load it # If any model has been selected, load it
if shared.model_name != 'None': if shared.model_name != 'None':
model_settings = get_model_specific_settings(shared.model_name) model_settings = get_model_settings_from_yamls(shared.model_name)
shared.settings.update(model_settings) # hijacking the interface defaults shared.settings.update(model_settings) # hijacking the interface defaults
update_model_parameters(model_settings, initial=True) # hijacking the command-line arguments update_model_parameters(model_settings, initial=True) # hijacking the command-line arguments
@ -1117,6 +1009,10 @@ if __name__ == "__main__":
'instruction_template': shared.settings['instruction_template'] 'instruction_template': shared.settings['instruction_template']
}) })
shared.persistent_interface_state.update({
'loader': shared.args.loader or 'Transformers',
})
shared.generation_lock = Lock() shared.generation_lock = Lock()
# Launch the web UI # Launch the web UI
create_interface() create_interface()