mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Update llama.cpp.md
This commit is contained in:
parent
77d2e9f060
commit
863d2f118f
@ -1,53 +0,0 @@
|
||||
# Using llama.cpp in the web UI
|
||||
|
||||
## Setting up the models
|
||||
|
||||
#### Pre-converted
|
||||
|
||||
Place the model in the `models` folder, making sure that its name contains `ggml` somewhere and ends in `.bin`.
|
||||
|
||||
#### Convert LLaMA yourself
|
||||
|
||||
Follow the instructions in the llama.cpp README to generate the `ggml-model.bin` file: https://github.com/ggerganov/llama.cpp#usage
|
||||
|
||||
## GPU acceleration
|
||||
|
||||
Enabled with the `--n-gpu-layers` parameter.
|
||||
|
||||
* If you have enough VRAM, use a high number like `--n-gpu-layers 200000` to offload all layers to the GPU.
|
||||
* Otherwise, start with a low number like `--n-gpu-layers 10` and then gradually increase it until you run out of memory.
|
||||
|
||||
To use this feature, you need to manually compile and install `llama-cpp-python` with GPU support.
|
||||
|
||||
#### Linux
|
||||
|
||||
```
|
||||
pip uninstall -y llama-cpp-python
|
||||
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir
|
||||
```
|
||||
|
||||
#### Windows
|
||||
|
||||
```
|
||||
pip uninstall -y llama-cpp-python
|
||||
set CMAKE_ARGS="-DLLAMA_CUBLAS=on"
|
||||
set FORCE_CMAKE=1
|
||||
pip install llama-cpp-python --no-cache-dir
|
||||
```
|
||||
|
||||
#### macOS
|
||||
|
||||
```
|
||||
pip uninstall -y llama-cpp-python
|
||||
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir
|
||||
```
|
||||
|
||||
Here you can find the different compilation options for OpenBLAS / cuBLAS / CLBlast: https://pypi.org/project/llama-cpp-python/
|
||||
|
||||
## Performance
|
||||
|
||||
This was the performance of llama-7b int4 on my i5-12400F (cpu only):
|
||||
|
||||
> Output generated in 33.07 seconds (6.05 tokens/s, 200 tokens, context 17)
|
||||
|
||||
You can change the number of threads with `--threads N`.
|
42
docs/llama.cpp.md
Normal file
42
docs/llama.cpp.md
Normal file
@ -0,0 +1,42 @@
|
||||
# llama.cpp
|
||||
|
||||
llama.cpp is the best backend in two important scenarios:
|
||||
|
||||
1) You don't have a GPU.
|
||||
2) You want to run a model that doesn't fit into your GPU.
|
||||
|
||||
## Setting up the models
|
||||
|
||||
#### Pre-converted
|
||||
|
||||
Download the ggml model directly into your `text-generation-webui/models` folder, making sure that its name contains `ggml` somewhere and ends in `.bin`. It's a single file.
|
||||
|
||||
`q4_K_M` quantization is recommended.
|
||||
|
||||
#### Convert Llama yourself
|
||||
|
||||
Follow the instructions in the llama.cpp README to generate a ggml: https://github.com/ggerganov/llama.cpp#prepare-data--run
|
||||
|
||||
## GPU acceleration
|
||||
|
||||
Enabled with the `--n-gpu-layers` parameter.
|
||||
|
||||
* If you have enough VRAM, use a high number like `--n-gpu-layers 1000` to offload all layers to the GPU.
|
||||
* Otherwise, start with a low number like `--n-gpu-layers 10` and then gradually increase it until you run out of memory.
|
||||
|
||||
This feature works out of the box for NVIDIA GPUs. For other GPUs, you need to uninstall `llama-cpp-python` with
|
||||
|
||||
```
|
||||
pip uninstall -y llama-cpp-python
|
||||
```
|
||||
|
||||
and then recompile it using the commands here: https://pypi.org/project/llama-cpp-python/
|
||||
|
||||
#### macOS
|
||||
|
||||
For macOS, these are the commands:
|
||||
|
||||
```
|
||||
pip uninstall -y llama-cpp-python
|
||||
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir
|
||||
```
|
Loading…
Reference in New Issue
Block a user